

Operation Manual

X52DF

Issue 003 2021-02

Winterthur Gas & Diesel Ltd.
Winterthur Gas & Diesel AG
Winterthur Gas & Diesel S.A.

Schützenstrasse 3
P.O. Box 414, 8401
Winterthur, Switzerland

Tel. +41 (0)52 264 8844
Fax +41 (0)52 264 8866
www.wingd.com

WIN GD
Winterthur Gas & Diesel

© 2021 Winterthur Gas & Diesel Ltd. – All rights reserved

No part of this publication may be reproduced or copied in any form or by any means (electronic, mechanical, graphic, photocopying, recording, taping or other information retrieval systems) without the prior written permission of the copyright holder. Winterthur Gas & Diesel Ltd. makes no representation, warranty (express or implied) in this publication and assumes no responsibility for the correctness, errors or omissions of information contained herein. Information in this publication is subject to change without notice.

NO LIABILITY, WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL, IS ASSUMED WITH RESPECT TO THE INFORMATION CONTAINED HEREIN. THIS PUBLICATION IS INTENDED FOR INFORMATION PURPOSES ONLY.

Table of contents

1 Introduction

1.1	Operation Manual - change record.....	20
1.2	Preface.....	22
1.3	Technical documentation set.....	24
1.4	Data module codes (descriptive data).....	26
1.5	Data module codes (procedural data).....	28
1.6	About this book.....	30
1.7	About the engine.....	32
1.8	List of abbreviations.....	36

2 Safety

2.1	Safety precautions and safety rules.....	42
2.2	Safety precautions and safety rules for natural gas.....	46
2.3	Contamination and fire in the scavenge air spaces.....	48
2.4	Fire-fighting in the scavenge air space.....	50
2.5	Explosions in the crankcase.....	52
2.6	Prevent explosions in the crankcase.....	54
2.7	Prevention of explosions in the exhaust gas system (gas mode).....	56
2.8	Access to engine spaces.....	58

3 Design and function of the engine

3.1	Short description of the DF engine.....	62
3.2	Use of the engine.....	66
3.3	The relation between engine and propeller.....	70

4 Design and function of systems

4.1	General for systems.....	74
4.2	Cooling water system.....	76
4.3	Wash-water system.....	78
4.4	System oil system.....	80
4.5	Servo oil system.....	82
4.6	Cylinder oil system.....	84
4.7	Starting air system.....	86
4.8	Scavenge air system.....	88
4.9	Control air system.....	90
4.10	Exhaust gas system.....	92
4.11	Fuel system.....	94
4.12	Gas system.....	98
4.13	Pilot fuel system.....	100

4.14	HP Selective catalytic reduction system.....	102
4.15	LP Selective catalytic reduction system.....	122
4.16	Steam production control system.....	136

5 Design and function of components

5.1 Group 1 - Engine frame and bearings

5.1.1	Bedplate.....	144
5.1.2	Main bearing.....	146
5.1.3	Thrust bearing.....	148
5.1.4	Monoblock column.....	150
5.1.5	Tie rod.....	152

5.2 Group 2 - Cylinder

5.2.1	Cylinder liner.....	154
5.2.2	Lubricating quill.....	156
5.2.3	Gas admission valve.....	158
5.2.4	Piston rod gland.....	160
5.2.5	Direct controlled injection valve.....	162
5.2.6	Starting valve.....	164
5.2.7	Relief valve.....	166
5.2.8	Exhaust valve.....	168
5.2.9	Pilot injection valve.....	170

5.3 Group 3 - Crankshaft, connecting rod and piston

5.3.1	Crankshaft.....	172
5.3.2	Torsional vibration damper.....	174
5.3.3	Axial vibration damper.....	178
5.3.4	Turning gear.....	180
5.3.5	Connecting rod and connecting rod bearing.....	182
5.3.6	Crosshead and guide shoe.....	184
5.3.7	Piston.....	186

5.4 Group 4 - Supply unit drive and control components

5.4.1	Supply unit drive.....	188
5.4.2	Starting air shut-off valve.....	190
5.4.3	Control air supply.....	192
5.4.4	Local maneuvering stand for UNIC.....	194
5.4.5	Pick-up for speed measurement.....	196

5.5 Group 5 - Supply unit, pumps and control valves

5.5.1	Servo oil pump.....	198
5.5.2	Supply unit.....	200
5.5.3	Supply unit pilot fuel.....	202
5.5.4	Fuel pump.....	204
5.5.5	Pressure control valve.....	206
5.5.6	Flow limiting valve.....	208
5.5.7	Exhaust valve control unit.....	210

5.6	Group 6 - Scavenge air components	
5.6.1	Scavenge air receiver.....	212
5.6.2	Turbocharger.....	214
5.6.3	Auxiliary blower.....	216
5.6.4	Auxiliary blower switch box.....	218
5.6.5	Scavenge air cooler.....	220
5.6.6	Water separator.....	222
5.7	Group 7 - Cylinder lubrication and balancer	
5.7.1	Cylinder lubrication.....	224
5.7.2	Integrated electrical balancer (iELBA).....	226
5.8	Group 8 - Pipes	
5.8.1	Exhaust waste gate.....	232
5.9	Group 9 - Monitoring instruments	
5.9.1	Crank angle sensor unit.....	234
5.9.2	Water in oil monitor.....	236
5.9.3	Oil mist detector.....	238
6	Control system	
6.1	Engine control system UNIC.....	244
6.2	Local display unit (LDU-20) - general.....	250
6.3	Operate the local display unit (LDU-20).....	252
6.4	Intelligent combustion control.....	258
6.5	Integrated gas pressure regulation.....	262
6.6	Gas valve unit and external gas supply system.....	266
6.7	Local display unit (LDU-20) - pages	
6.7.1	LDU-20 pages - general for DF engine.....	272
6.7.2	LDU-20 page - MAIN.....	274
6.7.3	LDU-20 page - CONTROL LOCATIONS.....	278
6.7.4	LDU-20 page - FUEL MODE CONTROL.....	280
6.7.5	LDU-20 page - CA SENSOR STATUS.....	282
6.7.6	LDU-20 page - CYLINDER BALANCING DIESEL.....	284
6.7.7	LDU-20 page - CYLINDER BALANCING GAS.....	286
6.7.8	LDU-20 page - CYLINDER LUBRICATION.....	288
6.7.9	LDU-20 page - iCAT.....	290
6.7.10	LDU-20 page - DYNAMIC COMBUSTION CONTROL (DCC).....	294
6.7.11	LDU-20 page - EXHAUST VENTILATION.....	296
6.7.12	LDU-20 page - EXHAUST VALVES.....	298
6.7.13	LDU-20 page - FAILURE LIST.....	300
6.7.14	LDU-20 page - FAILURE SIMULATION.....	302
6.7.15	LDU-20 page - FUEL SHARING (if applicable).....	304
6.7.16	LDU-20 page - FUEL SYSTEM.....	306
6.7.17	LDU-20 page - GAS PRESSURE.....	308
6.7.18	LDU-20 page - GAS LEAK TEST.....	310

6.7.19	LDU-20 page - GAS ADMISSION VALVES.....	312
6.7.20	LDU-20 page - GAV MANUAL VALVE TEST.....	314
6.7.21	LDU-20 page - GVU & VALVE TEST.....	316
6.7.22	LDU-20 page - KNOCK CONTROL.....	318
6.7.23	LDU-20 page - LOG MESSAGES.....	320
6.7.24	LDU-20 page - MAIN FUEL INJECTION.....	322
6.7.25	LDU-20 page - PAGE INDEX.....	324
6.7.26	LDU-20 page - PERFORMANCE DATA DIESEL.....	326
6.7.27	LDU-20 page - PERFORMANCE DATA GAS.....	328
6.7.28	LDU-20 page - PILOT FUEL INJECTION.....	330
6.7.29	LDU-20 page - PILOT FUEL PRESSURE.....	332
6.7.30	LDU-20 page - SCAVENGE AIR - EWG (optional).....	334
6.7.31	LDU-20 page - SCREENSHOT.....	336
6.7.32	LDU-20 page - SOFTWARE INFO.....	338
6.7.33	LDU-20 page - IMO CRC INFO.....	340
6.7.34	LDU-20 page - SOFTWARE TOOLS.....	342
6.7.35	LDU-20 page - SYSTEM STATUS.....	344
6.7.36	LDU-20 page - SYSTEM SETTINGS.....	346
6.7.37	LDU-20 page - TEMPERATURES.....	348
6.7.38	LDU-20 page - USER PARAMETERS.....	350
6.7.39	LDU-20 page - LOG ENTRY DATA.....	352
6.7.40	LDU-20 page - DATE.....	354
6.7.41	LDU-20 page - ETHERNET.....	356

7 Installation

7.1	Installation.....	360
-----	-------------------	-----

8 Operation

8.1	Prepare the engine before start - general.....	362
8.2	Prepare the engine before start.....	364
8.3	Start the engine - general.....	372
8.4	Start the engine.....	374
8.5	Do checks during operation - general.....	376
8.6	Do checks during operation.....	378
8.7	Do regular safety checks.....	382
8.8	Maneuver the ship - general.....	386
8.9	Maneuver the ship.....	388
8.10	Change-over the diesel fuel - general.....	390
8.11	Change-over to and from gas - general.....	394
8.12	Change-over the diesel fuel automatically.....	396
8.13	Change-over from HFO to MDO manually.....	398
8.14	Change-over from MDO to HFO manually.....	400
8.15	Change-over to and from gas.....	402

8.16	Stop the engine - general.	404
8.17	Stop the engine.	406
8.18	Emergency stop the engine - general.	408
8.19	Emergency stop the engine.	410
8.20	Prepare the engine after stop - general.	412
8.21	Prepare the engine for a short service break.	414
8.22	Prepare the engine for standstill or for maintenance.	416
8.23	LP-SCR system: Change Tier mode.	420
8.24	Special running condition: Cylinder cut out.	424
8.25	Special running condition: Turbocharger cut out.	430

9 Service during operation

9.1	Do an analysis of the system oil.	440
9.2	Do an analysis of the cylinder oil.	442
9.3	Replace the filter element of the duplex filter.	446
9.4	Clean the scavenge air cooler during operation.	448
9.5	Do a test of the exhaust waste valve.	452
9.6	Running-in of new components - general.	454
9.7	Running-in of new components.	456

10 Troubleshooting

10.1	Troubleshooting - general data.	460
10.2	Malfunctions of systems and components.	462
10.3	Failures and defects of UNIC-flex components.	482
10.4	Bleed the cooling water system of the liner wall.	484
10.5	Examine the supply unit for servo oil leakage.	486
10.6	Examine the supply unit for fuel leakage.	490
10.7	Examine the rail unit for leakage.	494
10.8	Examine the FLV or fuel pipes for fuel leakage.	496
10.9	Temporary cut out a defective injection valve.	500
10.10	Temporary cut out a defective exhaust valve drive.	502
10.11	Temporary isolate a cylinder with cooling water leakage.	504
10.12	Disconnect the fuel pump.	506
10.13	Connect the fuel pump.	508
10.14	Temporary isolate a defective turbocharger.	510
10.15	Temporary isolate the exhaust waste gate.	514
10.16	Replace the filter of the iGPR.	518
10.17	Isolate a defective engine at twin engine installation.	522
10.18	Temporary isolate the HP SCR system.	524
10.19	Connect the HP SCR system after isolation.	528

11 Technical data

11.1	Engine data.	532
------	-------------------	-----

11.2	List of usual values and safeguard settings - general.	534
11.3	List of usual values and safeguard settings.	538
11.4	Section views.	550

12 Operating media

12.1	General for operating media.	554
12.2	Compressed air.	556
12.3	Scavenge air.	558
12.4	Gas fuels.	560

13 Schematic diagrams

13.1	Schematic diagrams - general.	562
------	------------------------------------	-----

List of tables

1 Introduction

1-1	Change record	20
1-2	Data module codes (descriptive data)	26
1-3	Data module codes (procedural data)	28
1-4	List of abbreviations and acronyms	36

4 Design and function of systems

4-1	Operation limits of exhaust gas temperature after exhaust gas manifold ...	104
4-2	HP SCR SYSTEM STATUS (MAIN PAGE)	115
4-3	HP SCR SYSTEM OVERVIEW	116
4-4	HP SCR INTERFACES	117
4-5	HP SCR MANUAL VALVE CONTROL	118
4-6	HP SCR SOFTWARE INFO	119
4-7	HP SCR PAGE INDEX	120
4-8	LP SCR SYSTEM STATUS (MAIN PAGE)	131
4-9	LP SCR SYSTEM OVERVIEW	132
4-10	LP SCR INTERFACES	133
4-11	LP SCR SOFTWARE INFO	134
4-12	LP SCR PAGE INDEX	135
4-13	STEAM PRODUCTION CONTROL (SPC)	137

5 Design and function of components

5-1	iELBA - control cabinet	230
5-2	iELBA - error indication	231

6 Control system

6-1	MAIN	275
6-2	CONTROL LOCATIONS	279
6-3	FUEL MODE CONTROL	281
6-4	CA SENSOR STATUS	283
6-5	CYLINDER BALANCING DIESEL	285
6-6	CYLINDER BALANCING GAS	287
6-7	CYLINDER LUBRICATION	289
6-8	iCAT (integrated Cylinder lubricant Auto Transfer)	291
6-9	DYNAMIC COMBUSTION CONTROL (DCC)	295
6-10	EXHAUST VENTILATION	297
6-11	EXHAUST VALVES	299
6-12	FAILURE LIST	301
6-13	FAILURE SIMULATION	303
6-14	FUEL SHARING (if applicable)	305
6-15	FUEL SYSTEM	307
6-16	GAS PRESSURE	309
6-17	GAS LEAK TEST	311

6-18	GAS ADMISSION VALVES	313
6-19	GAV MANUAL VALVE TEST	315
6-20	GVU & VALVE TEST	317
6-21	KNOCK CONTROL	319
6-22	LOG MESSAGES	321
6-23	MAIN FUEL INJECTION	323
6-24	PAGE INDEX	325
6-25	PERFORMANCE DATA DIESEL	327
6-26	PERFORMANCE DATA GAS	329
6-27	PILOT FUEL INJECTION	331
6-28	PILOT FUEL PRESSURE	333
6-29	SCAVENGE AIR - EWG (optional)	335
6-30	SOFTWARE INFO	339
6-31	IMO CRC INFO	341
6-32	SOFTWARE TOOLS	343
6-33	SYSTEM STATUS	345
6-34	SYSTEM SETTINGS	347
6-35	TEMPERATURES	349
6-36	USER PARAMETERS	351
6-37	LOG ENTRY DATA	353
6-38	DATE	355
6-39	ETHERNET	357

10 Troubleshooting

10-1	Supply pressure of the cylinder cooling water is too low	465
10-2	Supply temperature of the cylinder cooling water is too low	465
10-3	Cylinder cooling water temperature downstream of a cylinder is too high ..	465
10-4	Supply pressure of the cooling water to the SAC is too low	465
10-5	Supply temperature of the cooling water to the SAC is too low	466
10-6	Temperature of the cooling water downstream of the SAC is too high	466
10-7	Lubricating oil supply pressure at the engine inlet is too low	467
10-8	Lubricating oil supply pressure upstream of the injectors is too low	467
10-9	Lubricating oil supply temperature at the engine inlet is too high	467
10-10	Lubricating oil supply pressure upstream of the crossheads is too low	467
10-11	Servo oil pressure in the distributor pipe (mini rail) is not in the permitted range	467
10-12	Servo oil leakage flow from the servo oil supply unit is too high	468
10-13	Servo oil flow at a servo oil pump inlet is too low	468
10-14	Bearing oil temperature at a bearing outlet is too high	468
10-15	Oil mist concentration is too high	468
10-16	Piston cooling oil temperature downstream of a piston is too high	469
10-17	Piston cooling oil flow to a piston is not in the permitted range	469
10-18	TC bearing oil temperature at a turbocharger outlet is too high	469
10-19	TC bearing oil supply pressure upstream of a turbocharger is too low	469
10-20	TC bearing oil temperature at a turbocharger inlet is too high (external oil supply)	469
10-21	Damper oil supply pressure upstream of the torsional vibration damper is too low	470

10-22	Damper oil supply pressure upstream of the axial vibration damper is too low	470
10-23	Cylinder oil supply pressure is too low	470
10-24	Cylinder oil flow is too low	470
10-25	Fuel supply temperature is not in the permitted range	471
10-26	Fuel supply pressure at the engine inlet is too low	471
10-27	Fuel leakage flow from the fuel supply unit is too high	471
10-28	Temperature difference of the fuel outlet of the two fuel pumps is too high (for X35/-B or X40/-B engine)	471
10-29	Leakage flow from the rail unit is too high	471
10-30	Fuel leakage flow from fuel rail items is too high (engine with FLV)	471
10-31	Fuel leakage flow from fuel rail items is too high (engine with ICU)	472
10-32	Fuel pressure in the fuel rail is too high (for X35/-B or X40/-B engine)	472
10-33	Fuel pressure in the fuel rail is too low (for X35/-B or X40/-B engine)	472
10-34	Gas concentration in piston underside is too high	473
10-35	Difference pressure of pilot fuel filter is too high	473
10-36	Gas supply pressure is too low	473
10-37	Exhaust gas temperature downstream of a cylinder is too high	474
10-38	Exhaust gas temperature difference downstream of all cylinders is too high	474
10-39	Exhaust gas temperature upstream of a turbocharger is too high	474
10-40	Exhaust gas temperature downstream of a turbocharger is too high	475
10-41	Exhaust valve does not operate, unwanted noise	475
10-42	Smoke is too dark	475
10-43	Scavenge air temperature in the receiver is too high	476
10-44	Scavenge air temperature in the receiver is too low	476
10-45	Scavenge air pressure is too high	476
10-46	Scavenge air pressure is too low	476
10-47	Condensation flow at a water separator is too high	477
10-48	Condensation flow upstream of a water separator is too high	477
10-49	Scavenge air temperature in the piston underside is too high	477
10-50	Starting air supply pressure is too low	477
10-51	Pressure of the air spring air supply is too high	477
10-52	Pressure of the air spring air supply is too low	478
10-53	Oil leakage flow in the collector for leakage oil from the air spring is too high	478
10-54	Control air supply pressure is too low (usual supply)	478
10-55	Control air supply pressure is too low (stand-by supply)	478
10-56	Control air supply pressure is too low (safety supply)	478
10-57	Temperature of a thrust bearing pad is too high	479
10-58	Cylinder liner wall temperature is too high	479
10-59	A fuel pump actuator has a failure	479
10-60	Power supply to the power supply box E85 has a failure	480
10-61	Unwanted engine speed decrease	480
10-62	Unwanted engine stop	480
10-63	Examples of failure messages	482
10-64	Special failures	483

11 Technical data

11-1	General data	532
11-2	Rated power	533
11-3	Function code	536
11-4	Function group	537
11-5	Applied system	537
11-6	Cooling water systems (XX10NN to XX19NN)	539
11-7	Oil systems (XX2NNN, part 1)	540
11-8	Oil systems (XX2NNN, part 2)	541
11-9	Oil systems (XX2NNN, part 3 (turbocharger bearing oil))	542
11-10	Oil systems (XX2NNN, part 4)	543
11-11	Gas system (XX33NN and XX39NN)	544
11-12	Fuel system (XX34NN)	545
11-13	Exhaust gas system (XX37NN)	546
11-14	Air systems (XX40NN to XX44NN)	547
11-15	Miscellaneous items (XX45NN to XX52NN)	548
11-16	Failure messages	549

12 Operating media

12-1	Specifications for gas fuel	560
------	-----------------------------------	-----

13 Schematic diagrams

13-1	Function code	564
13-2	Function group	565
13-3	Applied system	565

List of illustrations

1 Introduction

1-1	Side view (generic)	33
1-2	Engine numbering (generic)	34

3 Design and function of the engine

3-1	Pressure - volume diagram and schematic of the two-stroke diesel cycle ..	63
3-2	Pressure - volume diagram and schematic of the two-stroke otto cycle	64
3-3	Operating range	66
3-4	Tuning options	68
3-5	Schematic diagram - Relation Speed/Power (FPP)	71

4 Design and function of systems

4-1	Line codes for systems	74
4-2	Cooling water system (generic and simplified)	77
4-3	Wash-water system (generic and simplified)	79
4-4	System oil system (generic and simplified)	81
4-5	Starting air system (generic and simplified)	87
4-6	Scavenge air system	89
4-7	Fuel system with FLV (generic and simplified)	96
4-8	Fuel system with ICU (generic and simplified)	97
4-9	Gas system (generic and simplified)	99
4-10	HP SCR system - layout	103
4-11	HP SCR system - emergency bypass	105
4-12	HP SCR system - change from Tier III to bypass	106
4-13	HP SCR system - purging and venting	107
4-14	HP SCR system - emergency bypass	108
4-15	HP SCR system - preparation	109
4-16	HP SCR system - Tier III	110
4-17	HP SCR system - principal control configuration	111
4-18	Control box E48	112
4-19	Control box E49	113
4-20	Control box E50	114
4-21	LDU-20 page - HP SCR SYSTEM STATUS (MAIN PAGE)	115
4-22	LDU-20 page - HP SCR SYSTEM OVERVIEW	116
4-23	LDU-20 page - HP SCR INTERFACES	117
4-24	LDU-20 page - HP SCR MANUAL VALVE CONTROL	118
4-25	LDU-20 page - HP SCR SOFTWARE INFO	119
4-26	LDU-20 page - HP SCR PAGE INDEX	120
4-27	LP SCR temperature controlled (example)	123
4-28	LP SCR bypass rate controlled (example)	124
4-29	LP SCR control system layout	126
4-30	LP SCR system - principal control configuration	127
4-31	Control box E70 with option SPC	128

4-32	Control box E71 with option SPC	129
4-33	Control boxes E72 and E73	130
4-34	LDU-20 page - LP SCR SYSTEM STATUS (MAIN PAGE)	131
4-35	LDU-20 page - LP SCR SYSTEM OVERVIEW	132
4-36	LDU-20 page - LP SCR INTERFACES	133
4-37	LDU-20 page - LP SCR SOFTWARE INFO	134
4-38	LDU-20 page - LP SCR PAGE INDEX	135
4-39	Example of SPC	136
4-40	LDU-20 page - STEAM PRODUCTION CONTROL	137
4-41	LDU for the steam boost mode	139

5 Design and function of components

5-1	Bedplate (generic)	144
5-2	Main bearing (generic)	146
5-3	Thrust bearing (generic)	149
5-4	Monoblock column (generic)	150
5-5	Tie rod (generic)	152
5-6	Cylinder - cooling water outlet (generic)	154
5-7	Lubricating quill (generic)	156
5-8	Gas admission valve (generic)	158
5-9	Piston rod gland (generic)	160
5-10	Starting valve (example)	164
5-11	Exhaust valve (generic)	168
5-12	Crankshaft (generic)	172
5-13	Steel spring damper (generic)	175
5-14	Viscous damper (generic)	176
5-15	Axial vibration damper (generic)	178
5-16	Axial vibration damper monitor (generic)	179
5-17	Turning gear (generic)	180
5-18	Connecting rod and connecting rod bearing (generic)	182
5-19	Crosshead and guide shoe (example)	184
5-20	Piston (example)	186
5-21	Supply unit drive (generic)	189
5-22	Starting air shut-off valve (example)	190
5-23	Control air supply (generic)	192
5-24	Local maneuvering stand (generic)	194
5-25	Pick-up for speed measurement (generic)	196
5-26	Supply unit (example)	200
5-27	Supply unit pilot fuel (generic)	202
5-28	Fuel pump (generic)	204
5-29	Flow limiting valve (generic)	208
5-30	Scavenge air receiver (example)	212
5-31	Scavenge air receiver - cross section (example)	213
5-32	Turbocharger (example)	214
5-33	Auxiliary blower (generic)	216
5-34	Switch box (generic)	218
5-35	Scavenge air cooler (generic)	220
5-36	Water separator (generic)	222

5-37	Effect of second order moments (M2v) of the engine	226
5-38	iELBA - function	227
5-39	iELBA - control cabinet	229
5-40	Exhaust waste gate (generic)	232
5-41	Crank angle sensor unit on flywheel (example)	235
5-42	Water in oil monitor (generic)	236
5-43	Oil mist detector (example)	238
5-44	Oil mist detector - schematic diagram (example)	239

6 Control system

6-1	ECS modules	245
6-2	Signal flow diagram	248
6-3	LDU-20 - overview	250
6-4	LDU-20 color display - general items	251
6-5	LDU-20 - navigation menu	253
6-6	ICC - pressure diagram	259
6-7	ICC - control schematic	260
6-8	iGPR - schematic diagram	262
6-9	GVU-ED	267
6-10	GVU-OD	268
6-11	GVU-OD: Schematic Diagram for Installation	269
6-12	GVU Control Panel	270
6-13	Fuel gas removal from the fuel gas pipes: Schematic Diagram	271
6-14	MAIN	274
6-15	CONTROL LOCATIONS	278
6-16	FUEL MODE CONTROL	280
6-17	CA SENSOR STATUS	282
6-18	CYLINDER BALANCING DIESEL	284
6-19	CYLINDER BALANCING GAS	286
6-20	CYLINDER LUBRICATION	288
6-21	iCAT (integrated Cylinder lubricant Auto Transfer)	290
6-22	DYNAMIC COMBUSTION CONTROL (DCC)	294
6-23	EXHAUST VENTILATION	296
6-24	EXHAUST VALVES	298
6-25	FAILURE LIST	300
6-26	FAILURE SIMULATION	302
6-27	FUEL SHARING (if applicable)	304
6-28	FUEL SYSTEM	306
6-29	GAS PRESSURE	308
6-30	GAS LEAK TEST	310
6-31	GAS ADMISSION VALVES	312
6-32	GAV MANUAL VALVE TEST	314
6-33	GVU & VALVE TEST	316
6-34	KNOCK CONTROL	318
6-35	LOG MESSAGES	320
6-36	MAIN FUEL INJECTION	322
6-37	PAGE INDEX	324
6-38	PERFORMANCE DATA DIESEL	326

6-39	PERFORMANCE DATA GAS	328
6-40	PILOT FUEL INJECTION	330
6-41	PILOT FUEL PRESSURE	332
6-42	SCAVENGE AIR - EWG (optional)	334
6-43	SOFTWARE INFO	338
6-44	IMO CRC INFO	340
6-45	SOFTWARE TOOLS	342
6-46	SYSTEM STATUS	344
6-47	SYSTEM SETTINGS	346
6-48	TEMPERATURES	348
6-49	USER PARAMETERS	350
6-50	LOG ENTRY DATA	352
6-51	DATE	354
6-52	ETHERNET	356

8 Operation

8-1	Cooling water system with bypass cooling	366
8-2	Cooling water system without bypass cooling	367
8-3	Cooling water system with circulation	368
8-4	Cylinder lubricant quantity	392
8-5	Select: Prepare Tier III	421
8-6	Select: Tier III	422
8-7	Select: Tier II	423
8-8	Allowed load during cylinder cut out	428
8-9	Turbocharger cut out procedure: Illustration 1	433
8-10	Turbocharger cut out procedure: Illustration 2	434
8-11	Turbocharger cut out procedure: Illustration 3	435
8-12	Turbocharger cut out procedure: Illustration 4	436
8-13	Turbocharger cut out procedure: Illustration 5	437

9 Service during operation

9-1	Location of ball valves - dirty oil samples	443
9-2	SAC - clean during operation (example)	449
9-3	Feed rate adjustments - running-in	454

10 Troubleshooting

10-1	Cooling water system with bypass cooling	485
10-2	Example of inspection point	487
10-3	Supply unit (example) and example of inspection point	491
10-4	Leakage on FLV and pipes (example)	497
10-5	Not all turbochargers are defective (example)	511
10-6	All turbochargers are defective (example)	512
10-7	iGPR filter- replace	520
10-8	SCR system - covers (example for 1 turbocharger)	525
10-9	SCR system - covers (example for 2 turbocharger)	526
10-10	SCR system - covers (example for 1 turbocharger)	529
10-11	SCR system - covers (example for 2 turbocharger)	530

11 Technical data

11-1	Operating range	533
11-2	Signal codes	536
11-3	Engine cross section	550
11-4	Engine longitudinal section	551

13 Schematic diagrams

13-1	Line codes	562
13-2	Process codes	563
13-3	Signal codes	564
13-4	Color codes and symbols - electric connection diagram	566

Page left intentionally blank

1 Introduction

1.1	Operation Manual - change record.....	20
1.2	Preface.....	22
1.3	Technical documentation set.....	24
1.4	Data module codes (descriptive data).....	26
1.5	Data module codes (procedural data).....	28
1.6	About this book.....	30
1.7	About the engine.....	32
1.8	List of abbreviations.....	36

1.1 Operation Manual - change record

Tab 1-1 Change record

Issue 003 from 2021-02

- Added instructions for special running conditions and tier mode change.
- Removal of misleading illustration which were generic or example illustrations.
- Adjustment of chapter structure in order to prevent impossible engine configurations.
- Minor updates to texts, tables, illustrations and values across the whole manual.

Issue 002 from 2020-01

- Added a sub-chapter: Gas Valve Unit and External Gas Supply System.
- Major adjustments to the contents of the chapter: Operating Media.
- Minor updates to texts, tables, illustrations and values across the whole manual.

Issue 001 from 2018-12

- Initial issue of this operation manual.

Page left intentionally blank

1.2 Preface

This manual is for use only for the related type of engine (the engine described in this manual).

Make sure that you know the inspection and overhaul intervals before you operate the engine.

Also obey the items that follow:

- **Safety**

Make sure that you read carefully this manual before you start work on the engine.

Make sure that you read carefully and obey the data given in chapter safety.

- **Data**

The specifications and recommendations of the classification societies are included in the design of the engine.

The data, instructions, graphics and illustrations etc in this manual are related to drawings from WinGD. These data relate to the date of issue of the manual (the year of the issue is shown on the title page and on the footer). All instructions, graphics and illustrations etc can change because of continuous new development and modifications.

- **Equipment and tools**

Keep all equipment and tools for maintenance and operation serviceable and in good condition.

- **Spare parts**

Use only original spare parts and components to make sure that the engine will continue to operate satisfactorily.

- **Personnel**

Only qualified personnel that have the applicable knowledge and training may do work on the engine, its systems and related auxiliary equipment.

Page left intentionally blank

1.3 Technical documentation set

Because of the continuous development of the engine, the technical documentation for the engine changes and is regularly updated. The change record shows all changes.

Important data and changes are given directly to the customer in the service bulletins.

To order technical documents, the data that follows is necessary:

- Engine type, year of manufacture and engine manufacturer
- Name of ship or site of installation
- Cylinder or engine number
- Special equipment
- Document type (printed manuals, CD or Shipdex dataset).

The technical documentation set for this engine includes the publications that follow.

1.3.1 Operation Manual

The Operation Manual (OM) contains data about engine operation, the necessary operating media (oil, water, fuel etc) and descriptions of the components and systems. The manual also gives troubleshooting procedures.

The manual gives data about the standard engine with all cylinder numbers, alternative designs and special equipment.

In this manual the engine connections (refer to the pipe connection plan) are the interface of the description. For a description of the plant supply systems refer to the Marine Installation Manual.

1.3.2 Maintenance Manual

The Maintenance Manual (MM) contains data about disassembly / assembly procedures that are necessary for the engine maintenance. The manual includes the maintenance schedule, data about the masses (weights) of components, a clearance table, tightening values for important screw connections and a tool list.

1.3.3 Spare Parts Catalogue

In the Spare Parts Catalogue (SPC, or code book) all spare parts of the engine are marked with a unique code number. You can order spare parts only with the code number from the Spare Parts Catalogue. Order spare parts from one of the suppliers that follow:

- CSSC Marine Service Co., Ltd.
- Wärtsilä Services Switzerland Ltd.
- Engine supplier.

1.3.4 External supplier documentation

The documentation from external suppliers gives data about the parts of the engine that are not supplied by WinGD, such as turbocharger, automatic filter or damper. Most of this documentation also contains data about spare parts.

1.3.5 Records and drawings

The setting tables, shop trial documents, schematic diagrams and survey certificates of the related engine are given with the first supply of the documentation.

1.3.6 Marine Installation Manual

The Marine Installation Manual (MIM) contains data for design engineers and naval architects, enabling them to optimize plant items and machinery space, and to do installation design work.

1.4 Data module codes (descriptive data)

This manual is divided into several data modules. Each data module is identified with a unique data module code, refer to [Table 1-2 - Data module codes \(descriptive data\)](#). The structure of the data module codes is as follows:

- ??##-#####-##??-##?-? (structure)
- AA00-5551-00AAA-043A-A (example).

Tab 1-2 Data module codes (descriptive data)

Code	Description	Length/type	Property	Example
?? ¹	Alternative versions/designs of items. Used when two or more items could be installed in the engine as alternatives for the same function (for example turbochargers from different suppliers)	2 alphabetic characters [A-Z]	sequential, starts with AA	AA
## ²	Applicability related to cylinder number. 00 = applicable to all engines independent of the number of cylinders; ## = applicable only to engines with that specific number of cylinders.	2 numeric characters [0-9]	arbitrary	00
##### ²	WinGD design group number	4 numeric characters [0-9]	arbitrary	5551
## ²	Used for sequential numbering of data modules.	2 numeric characters [0-9]	sequential, starts with 00	00
???	Used for alternative items differing in design but not enough to change the variant code.	3 alphabetic characters [A-Z]	sequential, starts with AAA	AAA
### ²	Shipdex information code, for example 043 = description of function attributed to the crew (functional breakdown)	3 numeric characters [0-9]	Shipdex specific	043
? ¹	Shipdex information code variant. Used for sequential numbering	1 alphabetic character [A-Z]	sequential, starts with A	A
? ¹	Shipdex item location code, for example A = information related to items installed on the product	1 alphabetic character [A-D]	Shipdex specific, default is A	A

1 Placeholder symbol for alphabetic characters.

2 Placeholder symbol for numeric characters.

NOTE: For the full list of available Shipdex information codes and more data about the Shipdex specification, refer to www.shipdex.org.

Page left intentionally blank

1.5 Data module codes (procedural data)

This manual is divided into several data modules. Each data module is identified with a unique data module code, refer to [Table 1-3 - Data module codes \(procedural data\)](#). The structure of the data module codes is as follows:

- ??##-#####-##??-##?-? (structure)
- AA00-5556-00AAA-520A-A (example).

Tab 1-3 Data module codes (procedural data)

Code	Description	Length/type	Property	Example
?? ¹	Alternative versions/designs of items. Used when two or more items could be installed in the engine as alternatives for the same function (for example turbochargers from different suppliers)	2 alphabetic characters [A-Z]	sequential, starts with AA	AA
## ²	Applicability related to cylinder number. 00 = applicable to all engines independent of the number of cylinders; ## = applicable only to engines with that specific number of cylinders.	2 numeric characters [0-9]	arbitrary	00
##### ²	WinGD design group number	4 numeric characters [0-9]	arbitrary	5556
## ²	Used for sequential numbering for the physical breakdown of components; 00 = complete component, 01 = first breakdown; for illustrated parts (tools) it is used for sequential numbering of data modules.	2 numeric characters [0-9]	sequential, starts with 00	00
???	Used for alternative items differing in design but not enough to change the variant code (for example AAA = Bearing shell No.1; AAB = Bearing shell No. 2 to #)	3 alphabetic characters [A-Z]	sequential, starts with AAA	AAA
### ²	Shipdex information code, for example 520 = Remove procedure	3 numeric characters [0-9]	Shipdex specific	520
? ¹	Shipdex information code variant. Used to differentiate different procedures defined by the same information code for the same DMC/Hardware section.	1 alphabetic character [A-Z]	variable	A

Code	Description	Length/type	Property	Example
? ¹	Shipdex item location code. A = information related to items installed on the product; B = information related to items installed on a major assembly removed from the product; C - information related to items on the bench. In this context, it does not matter, for example, whether an item has been removed from the product; D - information related to all three locations A, B, and C. No other combinations are allowed.	1 alphabetic character [A-D]	Shipdex specific	A

1 Placeholder symbol for alphabetic characters.

2 Placeholder symbol for numeric characters.

NOTE: For the full list of available Shipdex information codes and more data about the Shipdex specification, refer to www.shipdex.org.

1.6 About this book

In the sections that follow you find the definitions of WinGD for this book.

1.6.1 Definitions for general text

For general text in this book the definitions that follow are applicable:

- **ASD Simplified Technical English**

The text in this book obeys the rules for ASD Simplified Technical English.

- **Illustrations**

The items in an illustration are shown, if possible, in clockwise direction, for example 001, 002, 003.

NOTE: Illustrations are usually generic or are shown as example. Thus some items can be different on the current engine.

- **Cross references**

A cross reference to a different section of this book has the number and the title of the section, for example “refer to section [1.2 Preface](#)”. In the electronic version, a mouse click on the blue text shows the related section.

NOTE: The text “[section not applicable for this engine]” shows, that this cross reference and the related section are not applicable for this book.

- **Instructions**

Instructions in the procedures are given as steps, for example 1, 2, 3. These steps can be divided into sub-steps, for example 1.1, 1.2, 1.3 or also sub-sub-steps, for example 1.1.1, 1.1.2, 1.1.3.

- **Notes**

Notes give more data to help you do a task, or they give data about the related item. Notes come immediately before or after the related paragraph.

- **Decimal separator**

In this book a full stop (.) is used as decimal separator, for example 3.21 bar.

1.6.2 **Warnings**

Warnings in procedures give data about a hazard.

Warnings have the basic structure that follows:

- **Signal word**

The signal words that follow are applicable:

- WARNING
- CAUTION

- **Hazard**

The hazard data gives the dangerous situation.

- **Procedure**

The procedure gives data of how to prevent the dangerous situation.

The signal words have the different hazard levels that follow:

- **WARNING**

The signal word WARNING gives a dangerous situation at which death or large injury are possible. Do the related procedure to prevent this.

- **CAUTION**

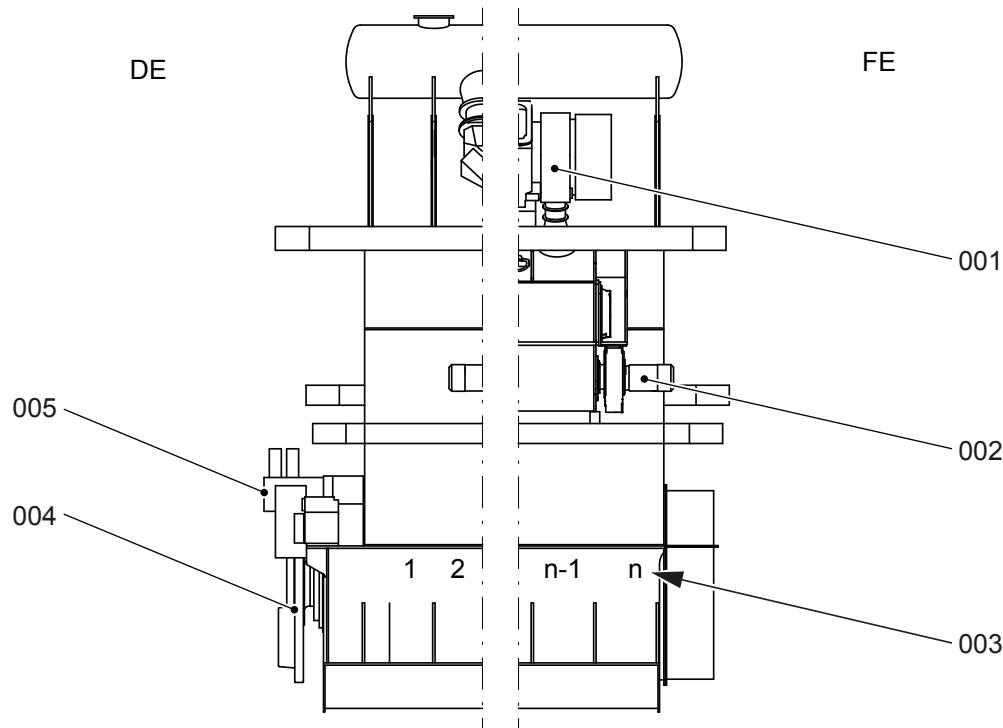
The signal word CAUTION gives a dangerous situation at which moderate or small injury to personnel or damage to equipment are possible. Do the related procedure to prevent this.

1.7 About the engine

In the sections that follow you find the definitions of WinGD for the engine.

1.7.1 Groups of components

Each component of the engine has a four-digit material number. WinGD has divided these components related to the first digit of the number into 9 groups:


- Group 1 - Engine frame and bearings
- Group 2 - Cylinder
- Group 3 - Crankshaft, connecting rod and piston
- Group 4 - Supply unit drive and control components
- Group 5 - Supply unit, pumps and control valves
- Group 6 - Scavenge air components
- Group 7 - Cylinder lubrication and balancer
- Group 8 - Pipes
- Group 9 - Monitoring instruments.

1.7.2 Engine sides and ends - names

The sides and ends of the engine have the names and abbreviations that follow (refer to Figure 1-1):

- DE - Driving End (end that has a flange to attach the propeller shaft)
- FS - Fuel Side (side that has the equipment for the supply of fuel and other operating media)
- FE - Free End (end that is closed with a cover)
- ES - Exhaust Side (side that has the equipment for the discard of the exhaust gas and for the supply of scavenge air).

Fig 1-1 Side view (generic)

Legend

FE	Free end
001	Turbocharger
002	Auxiliary blower
003	Main bearing number

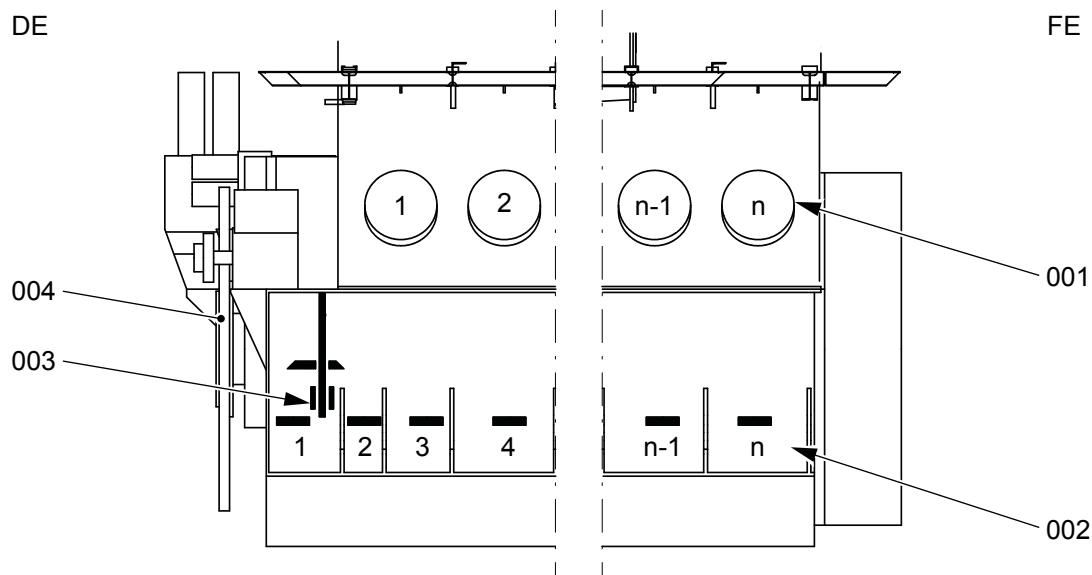
DE	Driving end
004	Flywheel
005	Supply unit

1.7.3 Standard and LEFT engine

An engine is one of two types:

- A standard engine has the exhaust side (ES) on the right side of the engine (seen from the driving end).

- A LEFT engine has the exhaust side (ES) on the left side of the engine (seen from the driving end).


NOTE: In the Spare Parts Catalogue parts that have the mark (LEFT) are only applicable for a LEFT engine. Parts that are applicable for the two engines types (Standard and LEFT) have no mark.

1.7.4 Numbering of items

WinGD uses the definitions for the numbering of items as follows (refer to [Figure 1-2](#)):

- In axial direction the numbering starts from the flywheel.
- In radial direction the numbering starts from the center of the flywheel.

Fig 1-2 Engine numbering (generic)

Legend

FE Free end

001 Cylinder number

002 Main bearing number

DE Driving end

003 Thrust bearing

004 Flywheel

Page left intentionally blank

1.8 List of abbreviations

Tab 1-4 List of abbreviations and acronyms

Short form	Full form, meaning
ACM	Angle Calculation Module
ADA	crank Angle Determination Algorithm
AHD	ahead
ALM	alarm
AMS	Alarm and Monitoring System
A/R	as required
AST	astern
ASTM	American Society for Testing and Materials
BDC	Bottom Dead Center
BN	Base Number
BSEC	Brake Specific Energy Consumption
BSFC	Brake Specific Fuel Consumption
BSGC	Brake Specific Gas Consumption
BSPC	Brake Specific Pilot fuel Consumption
CAN	Controller Area Network
CCAI	Calculated Carbon Aromaticity Index
CCM	Cylinder Control Module
CCU	Cylinder Control Unit
CCW	counterclockwise
CMCR	Contract Maximum Continuous Rating
COC	Cleveland Open Cup
CPP	Controllable Pitch Propeller
CS	crankshaft
CW	clockwise
Cyl.	cylinder
DBT	Delta Bypass Tuning
DCC	Dynamic Combustion Control
DE	Driving End
DENIS	Diesel Engine coNtrol and optlizing Specification
DF	Dual Fuel

Short form	Full form, meaning
ECA	Emission Control Area
ECR	Engine Control Room
ECS	Engine Control System
eg or e.g.	for example (exempli gratia)
EGR	Exhaust Gas Recirculation
ELBA	ELectrical BALancer
ES	Exhaust Side
ESS	Engine Safety System
FAME	Fatty Acid Methyl Esters
FAST	Fuel Actuated Sacless Technology
FCM	Flex Control Module
FCV	Forged Crankshaft Version
FE	Free End
FGSS	Fuel Gas Supply System
FLV	Flow Limiting Valve
FPP	Fixed Pitch Propeller
FQS	Fuel Quality Setting
FS	Fuel Side
FZG	Forschungsstelle für Zahnräder und Getriebbau (gear research center)
GAV	Gas Admission Valve
GSS	Gas Safety System
GTD	General Technical Data
GTU	GaTeway Unit
GVU	Gas Valve Unit
HFO	Heavy Fuel Oil
HFR	High Feed Rate
HP	High Pressure
HT	High Temperature
IACS	International Association of Classification Societies
iCAT	integrated Cylinder lubricant Auto Transfer
ICC	Intelligent Combustion Control
ICM	Intelligent Combustion Monitoring

Short form	Full form, meaning
ICU	Injection Control Unit
ie or i.e.	that is (id est)
iELBA	integrated EElectrical BAlancer
iGPR	integrated Gas Pressure Regulation
IMO	International Maritime Organization
Ind.	Indenture
IOM	Input Output Module
ISO	International Standard Organization
JIS	Japanese Industrial Standard
KOH	Potassium hydroxide
LDU	Local Display Unit
LED	Light Emitting Diode
LEL	Lower Explosive Level
LFR	Low Feed Rate
LHV	Lower Heating Value
LLT	Low-Load Tuning
LNG	Liquefied Natural Gas
LP	Low Pressure
LT	Low Temperature
MARPOL	International Convention for the Prevention of Pollution from Ships (MARine POLLution)
MCM	Main Control Module
MCP	Manual Control Panel
MCR	Maximum Continuous Rating
MCU	Main Control Unit
MDO	Marine Diesel Oil
MEG	MonoEthylene Glycol
MEP	Mean Effective Pressure
MGO	Marine Gas Oil
MIM	Marine Installation Manual
MM	Maintenance Manual
Modbus	serial communications protocol published by Modicon
MPG	MonoPropylene Glycol

Short form	Full form, meaning
N/A	not applicable
nil	not illustrated
No.	number
OAT	Organic Acid Technology
OM	Operation Manual
OPI	OPerator Interface (user interface in the engine control room)
PCS	Propulsion Control System
PCV	Pressure Control Valve
PMCC	Pensky Martens Closed Cup method
Pos.	position
PU	Piston Underside
RCS	Remote Control System
REF	Reference
rpm	revolutions per minute
SAC	Scavenge Air Cooler
SAE	Society of Automotive Engineers
SCR	Selective Catalytic Reduction
SCS	Speed Control System
SHD	shutdown
SLD	slowdown
SOI	Start Of Injection
SPC	Spare Parts Catalogue
SPC	Steam Production Control
TC	TurboCharger
TDC	Top Dead Center
UNIC	UNIfied Controls
USB	Universal Serial Bus
VCU	exhaust Valve Control Unit
VEC	Variable Exhaust valve Closing
VEO	Variable Exhaust valve Opening
VIT	Variable Injection Timing
WECS-9520	WinGD Engine Control System 9520

Short form	Full form, meaning
WHR	Waste Heat Recovery
WiCE	WinGD Integrated Control Electronics
WinGD	Winterthur Gas & Diesel Ltd.
WLL	Work Load Limit

2 Safety

2.1	Safety precautions and safety rules.....	42
2.2	Safety precautions and safety rules for natural gas.....	46
2.3	Contamination and fire in the scavenge air spaces.....	48
2.4	Fire-fighting in the scavenge air space.....	50
2.5	Explosions in the crankcase.....	52
2.6	Prevent explosions in the crankcase.....	54
2.7	Prevention of explosions in the exhaust gas system (gas mode).....	56
2.8	Access to engine spaces.....	58

2.1 Safety precautions and safety rules

2.1.1 General safety precautions

Use the data given below as a guide to the personnel.

- **Lighting**

Make sure that there is good permanent lighting in the engine room. Have a sufficient number of hand lamps available at different locations in the engine room.

- **Clean areas**

Keep the engine as clean as possible. Keep the electronic control boxes on the rail unit clean and dry. Make sure that no dust, sand or chemical vapor can go into the engine room.

This will help to prevent a fire in the engine room.

- **Fire**

Make sure that fire-fighting equipment is available in the engine room. Keep covers and casings of the engine closed until the engine is sufficiently cool.

Make sure that no fire extinguisher gases can be automatically released when personnel are in the engine room.

Make sure that the emergency exits are clearly marked.

Make sure that personnel do not smoke in the engine room.

- **Tools**

Put hand-tools in locations where you can easily get access to them. Put special tools and devices in positions in the engine room near the area where you use them.

Make sure that all tools have protection from corrosion.

Make sure that all tools are fixed to prevent from unwanted movement and from damage.

- **Spare parts**

Keep large spare parts as near as possible to the position where they will be installed and near the engine room crane.

Make sure that the spare parts have protection from corrosion.

Make sure that the spare parts are fixed to prevent from unwanted movement and from damage.

Replace used spare parts as soon as possible.

- **Temperature**

Parts of the engine become hot during operation. Be careful and use gloves when you have to touch hot parts with your hands.

- **Frost hazard**

If the ambient air temperature decreases below 0°C and the engine is not in operation, the water in the pipe systems can freeze. To prevent this, drain the pipe systems or increase the temperature in the engine room.

2.1.2 General safety rules

If you do work at or near the engine, obey the rules that follow to prevent risks of harm or damage to personal, to equipment, or to environment.

- **Rules for personnel**

Put on the correct safety and protective equipment.

Use fall protection equipment when you work in a height of more than one meter.

Make sure that you know the fire-fighting procedures.

Make sure that you know the health and general safety data and the environment protection data.

Prevent direct contact with operating media or with hot parts.

Only stay on areas that are intended for this.

Do not stay on pipes, valves or fittings.

Do not stay under hanging loads.

Do not put hands or feet under hanging loads.

Keep away from the running engine.

Keep ignition sources away from the engine.

Carry out all work carefully.

- **Rules for operation**

Start the engine only if the engine is in good condition.

Keep the safety signs on the engine clean.

Keep unauthorized persons away from the engine.

Clean walk ways and stays regularly.

Open valves and shut-off devices carefully to prevent injury from released media.

Do not use water or cleaning fluid to clean the electronic components and control boxes.

Do not open the relief valve to release pressure during engine operation.

- **Rules for service and maintenance**

Keep the tools serviceable, for example calibrate gauges regularly.

Use the correct tools in a correct way, for example lifting devices and ropes.

Protect lifted parts with applicable materials.

Do work inside the engine with a safety person on the outside.

Put covers or protection on opened openings or on removed sealing faces.

Attach removed parts in the engine room to prevent movement of the parts.

Replace O-rings during an overhaul of components.

Make sure that after installation all pipes and items are fixed correctly.

Use lock wires, tab washers, and lock plates one time only.

Before you assemble screws and studs in very hot areas, apply on the threads a lubricant that is resistant to high temperatures.

- **Rules for electric welding**

Do electric welding near the engine only if the engine is stopped.

Set to OFF the electronic system and wait a minimum of one minute.

Disconnect electronic modules or sensors in a radius of two meters from the welding place.

Make sure that there are no explosive fluids or gases in the work area.

Apply protection to electronic parts to prevent damage from sparks and heat.

Place the connection to earth as near as possible to the welding object.

Make sure that the welding cable has no loops and is not parallel to cables of electronic units.

Page left intentionally blank

2.2 Safety precautions and safety rules for natural gas

2.2.1 General

High concentrations of natural gas can cause dizziness and there is a risk of suffocation. Make sure that all related spaces have good airflow.

Natural gas in low concentration is not dangerous to personnel.

Natural gas can be dangerous in a gas engine installation. Gas leakage into the engine room can cause fires and explosions.

An explosion also can occur, if unburned gas flows into the exhaust gas system.

2.2.2 Definition of gas hazardous zones

The definitions of hazardous zones refer to IEC 600092-502:1999 and are as follows:

- **Zone Z0**

This is an area in which an explosive gas atmosphere is continuously present or is present for long periods.

Examples - Combustion chamber, gas pipes

- **Zone Z1**

This is an area in which an explosive gas atmosphere can be present during usual operation or during unusual operating conditions.

Examples - Piston under side, space of double wall pipe

- **Zone Z2**

This is an area in which an explosive gas atmosphere usually is not present or is present only for short periods, for example if a leakage occurs.

Examples - Exhaust gas system

The engine room and the engine crankcase are given as gas safe non-hazardous areas. Thus they do not refer to the definitions of hazardous zones.

2.2.3 Precautions for work in gas hazardous zones

If you do work in a gas hazardous zone, obey the rules that follow to prevent risks of harm or damage to personal, to equipment, or to environment:

- Make sure that you have completed the safety training.
- Make sure that you have the necessary qualification.
- Make sure that you have the permission of the safety officer.
- Ask for the aid of one more person.
- Make sure that the fuel gas system has no pressure.
- Make sure that the remaining gas in the fuel gas system is replaced with inert gas (for example nitrogen).
- Make sure that the airflow is sufficient for the work area.
- Make sure that related systems are prevented from an unwanted start. Use the lock-out and tag-out practice.
- Use a handheld gas detector.
- Do not use systems and devices that can cause a spark, for example a cigar lighter, matches, etc.
- Do not smoke or start a fire.
- Put on antistatic clothes.
- Make sure that your safety shoes are in good condition. Steel toe caps can cause sparks.
- Use only approved tools that do not cause sparks and test equipment that will not cause an explosion.
- Do not use digital cameras, mobile phones or other electronic devices (for example radios, CD-players).
- Use only intrinsically safe and approved MHSA two-way radios and transceivers.
- Use only approved light sources (safety flashlights).
- If you do welding, obey the instructions of the responsible safety officer and the primary contractor. Make sure that the responsible safety officer does checks during the welding work.
- Read and obey the safety procedures for the ship or for the engine room (for example security plan, warnings, life-saving devices, escape routing, meeting point, gas hazardous zones, special instructions on the safety notice board).
- Keep your work area clean. Remove flammable material immediately.

2.3 Contamination and fire in the scavenge air spaces

2.3.1 Causes of contamination

The primary cause of contamination is when combustion materials are blown between the piston and cylinder into the scavenge air spaces (blow-by). The contamination will be more if the fuel is not fully burned, which causes exhaust smoke.

2.3.1.1 Unsatisfactory combustion

The causes of unsatisfactory combustion are as follows:

- The injection valves do not operate correctly (the nozzle tip has trumpets or is worn).
- The fuel is too cold, specially at low load.
- Operation with a temporarily low air supply during large differences in engine load and the scavenge air pressure fuel-limiter set too high.
- Too much load.
- Low air supply because the ventilation in the engine room is not sufficient.
- The silencer and diffuser on the air side of the turbocharger has contamination.
- The wire mesh and nozzle ring upstream of the turbocharger has contamination.
- The exhaust gas boiler, the air cooler and water separator, the air flaps in the scavenge air receiver and the scavenge ports have contamination.

2.3.1.2 Blow-by

The causes of blow-by are as follows:

- Worn piston rings, broken piston rings or piston rings that cannot move.
- Worn cylinder liner.
- Incorrect operation of a lubricating quill.
- The running surface of the cylinder liners have damage.

If there are one or more of these conditions, the remaining particles will collect at the areas that follow:

- Between the piston ring and piston ring groove.
- On the piston skirt.
- In the scavenge ports.
- On the bottom of the cylinder block (piston underside).
- In the scavenge air receiver.

2.3.2 Causes of fire

The causes of fires are as follows:

- If sealing rings of the piston rod gland are defective, system oil and cylinder oil will collect in the piston underside. If the drain pipes from the piston underside are blocked, this oil can not drain. A high temperature in the piston underside then can cause a fire.
- If piston rings are defective, combustion gases and sparks can go into the piston underside. Contamination in the piston underside then can cause a fire.

You must do regular checks of the bottom of the cylinder block and scavenge air receiver to keep clean the cylinder block and scavenge air receiver, refer to section [8.5 Do checks during operation - general](#).

2.3.3 Indication of a fire

The indications of a fire are as follows:

- You can hear the related temperature alarms.
- A large increase in the exhaust gas temperature of the related cylinder and an increase in piston underside temperature.

For the fire-fighting procedures, refer to section [2.4 Fire-fighting in the scavenge air space](#).

2.4 Fire-fighting in the scavenge air space

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
--	---------------

Duration for performing the procedure	1.0 man-hours
---------------------------------------	---------------

Duration for performing the requirements after job completion	0.0 man-hours
---	---------------

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- Refer to section [2.3 Contamination and fire in the scavenge air spaces](#)

PROCEDURE

- 1 If you think there is no fire, do the steps as follows:
 - 1.1 Decrease the engine power.
 - 1.2 Cut out the injection of the related cylinder.
 - 1.3 Increase the feed rate of the lubricating oil in the related cylinder to the maximum, although there is high temperature in the related cylinder.

WARNING

Injury Hazard. Where CO₂ is used to extinguish a fire in the engine, there is a risk of suffocation. Make sure that all related spaces have good airflow to remove all CO₂ gas before you go into the engine.

CAUTION

Damage Hazard. Steam can cause corrosion. If steam is used to extinguish a fire you must do procedures to prevent corrosion.

- 2 If you think there is a fire, do the steps as follows:
 - 2.1 Shut down the engine.
 - 2.2 Fight the fire with the installed fire extinguishing system.
- 3 After approximately 5 minutes to 15 minutes, do the checks as follows:
 - 3.1 Do a check of the exhaust gas temperature.
 - 3.2 Do a careful check of the temperatures of the doors to the piston underside space.
- 4 Find the causes of the problems as follows:
 - 4.1 Do a check of the cylinder liner running surface, piston and piston rings.
 - 4.2 Do a check of the flaps in the scavenge air receiver (replace if necessary).
 - 4.3 Do a check for possible leaks.
 - 4.4 Do a check of the piston rod gland as much as possible.
 - 4.5 Do a check of the injection nozzles.
 - 4.6 If necessary, clean or repair the defective items.
- 5 Start the engine as follows:
 - 5.1 If applicable, cut in the injection.
 - 5.2 Start the engine.
 - 5.3 Start the injection and slowly increase the load.
 - 5.4 Set the cylinder oil feed rate to the applicable value.
NOTE: Do not operate the engine for long periods with a high cylinder oil setting.

CLOSE UP

- None

2.5 Explosions in the crankcase

Examples of explosions in the crankcase of diesel engines have shown that they can only occur in special conditions, and thus do not occur frequently.

The cause of crankcase explosions is oil mist. Oil mist comes from components that have become unusually hot.

The engine has oil mist detectors, refer to section [5.9.3 Oil mist detector](#).

Correct engine maintenance will help prevent explosions in the crankcase.

Page left intentionally blank

2.6 Prevent explosions in the crankcase

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	1.0 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

WARNING

Danger: If an oil mist alarm is activated, keep away from the engine. There is a risk of explosion.

WARNING

Danger: Do not open the crankcase doors or the covers for a minimum of 20 minutes after engine stop. If air goes into the crankcase, an explosion can occur.

WARNING

Injury hazard: The crankcase doors have relief valves. To prevent accidents no person must be in the areas of gases that can come out of these relief valves. Injury to personnel can occur.

PRELIMINARY OPERATIONS

- None

PROCEDURE

- 1 If an oil mist detector activates an alarm, do as follows:
 - 1.1 Decrease immediately the engine speed (power).
 - 1.2 Stop the engine if possible.
 - 1.3 Let the engine temperature decrease for a minimum of 20 minutes.
 - 1.4 Find the cause and repair the fault.

NOTE: If no fire-extinguishing system is installed or not in use, a portable fire extinguisher must be kept ready when the crankcase doors are opened.

CLOSE UP

- None

2.7 Prevention of explosions in the exhaust gas system (gas mode)

Unburned gas in the exhaust gas system can cause an explosion.

2.7.1 General

When the engine operates in gas mode or in fuel sharing mode, unburned gas can stay in the exhaust gas system after the conditions that follow:

- There are misfires in a combustion chamber.
- There is an emergency engine stop.
- There is an engine shutdown signal that you cannot cancel.
- There is an electrical power failure to the engine control system (ECS).

Related to the safety concept of WinGD the engine has the items and functions that follow:

- The components of the exhaust gas system upstream of the turbochargers are resistant to explosions.
- The gas pipes of the engine and of the related gas system have connection points for inert gas. Thus you can remove fuel gas from the related pipes before you do work on them.
- The ECS continuously monitors the combustion. If necessary the ECS adjusts the combustion parameters.
- If there are too many misfires, the ECS automatically changes to diesel mode.
- If the ECS finds a dangerous condition at an engine stop, the ECS sends a signal for an automatic ventilation sequence, refer to [Para 2.7.2](#).

2.7.2 Ventilation sequence

The ventilation sequence removes unburned gas from the exhaust gas system to the air.

After an engine stop, if necessary the engine safety system (ESS) or the ECS sends a signal for a ventilation request.

The steps of the ventilation sequence are as follows:

- The engine safety system (ESS) or the ECS sends a signal to the control panel (Ventilation Request "Automatic").
NOTE: A start interlock is active until the ventilation is automatically or manually stopped.
- **NOTE:** If necessary the operator can manually send a signal (Ventilation Request "Manual").
- The operator must always start the ventilation sequence manually:
 - The operator starts the auxiliary blowers.
 - The operator starts the servo oil service pump.
- The exhaust valves open and the ventilation starts (Ventilation Passed "In progress").
- If necessary the operator can always stop the ventilation before the automatic stop (for example if there is an urgent need to start the engine immediately).
- After a specified period the ECS stops the ventilation (Ventilation Passed "Yes").
- At the next engine start the ECS does a longer air run than usual.

2.8 Access to engine spaces

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 0.5 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- The engine must be stopped and prepared for maintenance, refer to section [8.20 Prepare the engine after stop - general](#)

PROCEDURE

- 1 Make sure that there is always a safety person on the outer side of the engine.
- 2 Wear the correct safety equipment.
- 3 For a DF engine, obey the safety rules for natural gas, refer to section [2.2 Safety precautions and safety rules for natural gas](#).
- 4 Release the pressure in the air spring air pipe to open the exhaust valves.
- 5 Make sure that the starting air supply pipe has no pressure (ie starting air shut-off valve 30-4325_E0_1 is closed, ball valves 30-8605_E0_6 and 30-8605_E0_7 are open).
- 6 Engage the turning gear and lock the lever in this position.
NOTE: Other ships in the water cause currents, which cause the movement of the propeller and the engine. The engine and propeller cannot move when the turning gear is engaged.
- 7 If applicable, open the indicator valves or the relief valves on the cylinder cover.
- 8 Make sure that there is sufficient air in the engine spaces, eg use a ventilator.
- 9 Go into the engine spaces and do the work very carefully.
- 10 When you go out of the engine spaces, move all the equipment out of the engine.

CLOSE UP

- None

Page left intentionally blank

3 Design and function of the engine

3.1	Short description of the DF engine.....	62
3.2	Use of the engine.....	66
3.3	The relation between engine and propeller.....	70

3.1 Short description of the DF engine

The engine is a single acting two-stroke dual fuel (DF) engine of crosshead design. The engine has turbochargers and exhaust valves.

General data about the engine are given as follows:

- In diesel mode, the engine can use marine diesel oil (MDO) and heavy fuel oil (HFO) with different qualities. In diesel mode also a small quantity of pilot fuel is injected to prevent contamination of the pilot fuel valves.
- In gas mode, the engine uses liquefied natural gas (LNG) at low-pressure. Thus the lean-burn principle (Otto cycle) is used. The pilot fuel is marine diesel oil that is injected into the cylinder to ignite the gas-air mixture. In gas mode the engine obeys the IMO Tier III regulations.
- In the optional fuel sharing mode (refer to [Para 3.1.3](#)), the engine can use a mixture of MDO/HFO and LNG in the given range.
- The engine obeys the IGC (International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk) and the IGF (International Code for Ships using Gas or other Low Flashpoint Fuels) codes.
- The engine uses the common-rail system with full electronic control of the fuel injection system, exhaust valve operation, starting valve operation, and cylinder operation.
- Related to the design, the engine turns clockwise or counterclockwise for the ahead direction. For the astern direction the engine can turn in the other direction.
- The engine control system (ECS) electronically controls all important engine functions (eg speed control, overspeed protection, and fuel injection). The engine control can have different remote controls, which are related to the WinGD specifications from recommended manufacturers.

3.1.1 Cycle of a two-stroke DF engine in diesel mode

The sequences of a two-stroke DF engine in diesel mode are as follows (refer to [Figure 3-1](#)):

- **Sequence 1 - 2**

The piston moves up and thus compresses the scavenge air. This increases the temperature of the air above the self-ignition temperature of the fuel.

- **Sequence 2 - 3**

At almost TDC fuel at very high pressure is injected into the hot air in the combustion chamber. The fuel ignites and combustion starts.

- **Sequence 3 - 4**

The gases expand and push the piston down. The pressure in the combustion chamber decreases.


- **Sequence 4 - 1**

The scavenge air replaces the exhaust gas as follows:

- At (4) the exhaust valve opens.
- At (a) the scavenge ports get uncovered. Scavenge air enters the cylinder and pushes the exhaust gas into the exhaust gas manifold.
- At (b) the scavenge ports get covered.
- At (1) the exhaust valve closes.

The cycle is completed and starts again.

Fig 3-1 Pressure - volume diagram and schematic of the two-stroke diesel cycle

00120

3.1.2 Cycle of a two-stroke DF engine in gas mode

The sequences of a two-stroke DF engine in gas mode are as follows (refer to [Figure 3-2](#)):

- **Sequence 1 - 2**

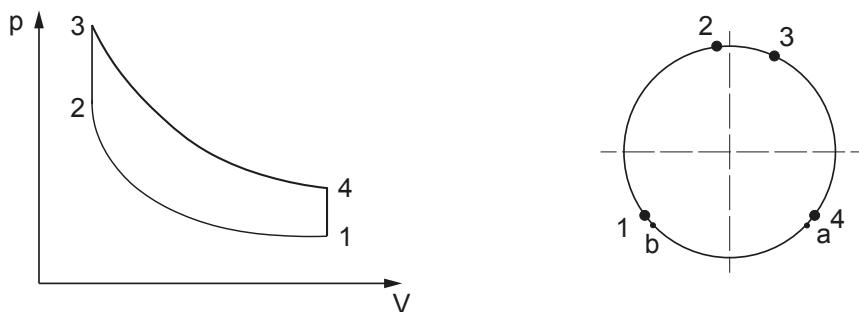
The piston moves up and thus compresses the scavenge air. Gas is injected into the combustion chamber. The temperature and the pressure of the gas-air mixture increase.

- **Sequence 2 - 3**

At almost TDC a small quantity of pilot fuel is injected into the combustion chamber. The gas-air mixture ignites and combustion starts.

- **Sequence 3 - 4**

The gases expand and push the piston down. The pressure in the combustion chamber decreases.


- **Sequence 4 - 1**

The scavenge air replaces the exhaust gas as follows:

- At (4) the exhaust valve opens.
- At (a) the scavenge ports get uncovered. Scavenge air enters the cylinder and pushes the exhaust gas into the exhaust gas manifold.
- At (b) the scavenge ports get covered.
- At (1) the exhaust valve closes.

The cycle is completed and starts again.

Fig 3-2 Pressure - volume diagram and schematic of the two-stroke otto cycle

3.1.3 Fuel sharing mode

The optional fuel sharing mode enables an increased fuel flexibility. You can use liquid fuel (HFO, MDO, or MGO) and at the same time gas fuel. The fuel sharing mode has the limits that follow:

- The engine must operate in ahead direction.
- The engine power must be more than 50% of CMCR.
- The maximum ratio of liquid fuel to gas is 50%.
- The minimum quantity of liquid fuel is 5% related to the total energy input.

You have to select the fuel sharing mode and the ratio of liquid fuel to gas (fuel sharing ratio) manually.

The gas admission valves (GAV) supply the gas into the combustion chamber. The injection valves supply the specified quantity of liquid fuel. The gas and the liquid fuel combust at the same time. The speed governor controls the quantity of the two fuels to the selected ratio.

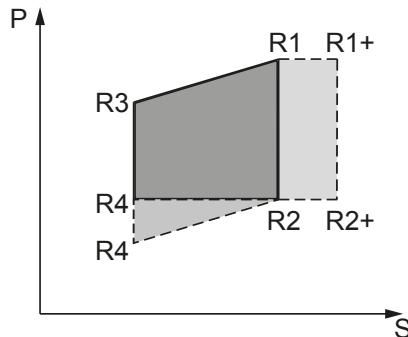
3.1.4 Dynamic Combustion Control

Dynamic Combustion Control (DCC) enables full power output for gas mixtures with a methane number of 65 and higher, independent of ambient condition and engine rating.

While DCC is active in combustion stabilising mode, a small amount of liquid fuel is injected by the main injectors. This increases the speed of the turbochargers. Thus the engine gets sufficient combustion air to keep the intended gas-air mixture (lambda).

NOTE: While DCC is active in gas mode the engine remains IMO Tier III compliant related to NO_x limits.

3.2 Use of the engine


3.2.1 Intended use

The engine is intended to drive a propeller of a vessel. The engine changes the chemical energy of the fuel to mechanical energy.

The engine must only be used in the operating range as given in the data sheets, refer to chapter 11.

Related to the contract the Contract Maximum Continuous Rating (CMCR) is specified in the range of [Figure 3-3](#). The points R1+ and R2+ are only applicable, if the engine has an extended range.

Fig 3-3 Operating range

Legend

R1	Highest power at highest speed	R3	Highest power at lowest speed
R1+	Highest power at highest speed (extended)	R4	Lowest power at lowest speed
R2	Lowest power at highest speed	P	Power
R2+	Lowest power at highest speed (extended)	S	Speed

The intended use of the engine includes the items that follow:

- Obey this Operation Manual.
- Obey the related safety regulations.
- Obey the instructions of the operating company.
- Operate the engine in the specified limits.
- Use the correct operating media.

3.2.2 Incorrect use

Incorrect use of the engine can result in personal injury and in damage to physical properties.

Personal injury or damage to physical properties caused by incorrect use will be the responsibility of the operating company.

The actions that follow must be looked as examples to be an incorrect use:

- Operation of the engine with disabled, changed or defective safety devices
- Operation of the engine with personnel who are not approved.

3.2.3 Tuning

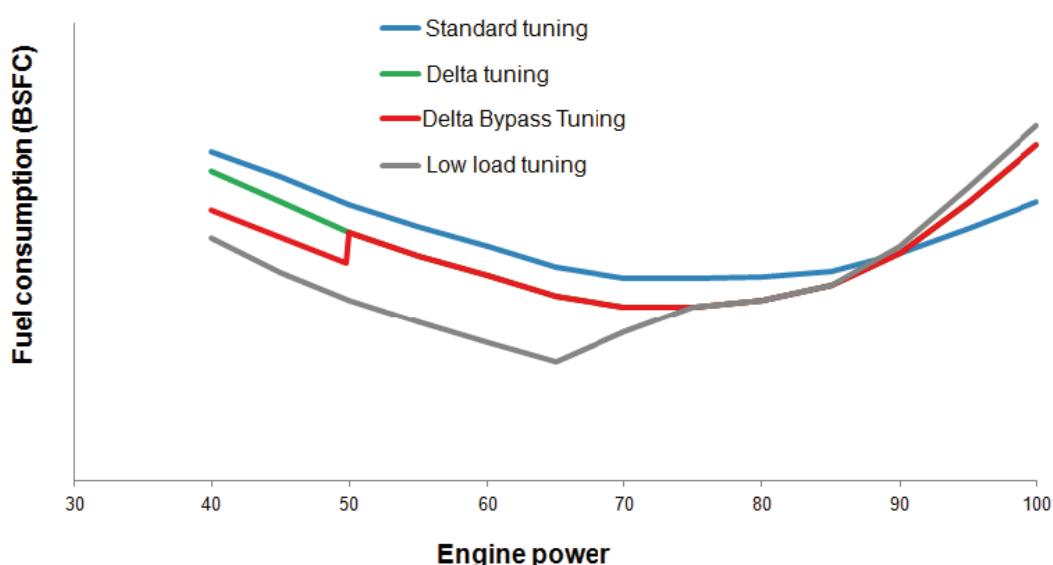
Related to the contract the engine has one of the tuning options that follow (refer to [Figure 3-4](#)):

- **Standard tuning**

The standard tuning gives a good fuel consumption over the full engine power range.

- **Delta tuning**

The delta tuning decreases the fuel consumption below 90% engine power compared to standard tuning. But it increases the fuel consumption between 90% and 100% of engine power.


- **Delta bypass tuning**

The delta bypass tuning decreases the fuel consumption below 50% engine power compared to delta tuning. For more than 50% of engine power the fuel consumption is the same as delta tuning, but the steam production is increased.

- **Low-load tuning**

The low-load tuning decreases the fuel consumption below 75% engine power compared to delta tuning or delta bypass tuning. But it increases the fuel consumption between 90% and 100% of engine power compared to delta tuning.

Fig 3-4 Tuning options

Page left intentionally blank

3.3 The relation between engine and propeller

3.3.1 General

There is a specified relation between the propeller speed and the absorbed power in ships that have fixed pitch propellers. The relation is between the propeller and the speed at which it turns.

The formula that follows (where P = power and n = speed) gives an approximate result, which is sufficient for conventional vessels:

$$\frac{P_1}{P_2} = \left(\frac{n_1}{n_2}\right)^3$$

00095

The graph from this formula is known as the propeller property.

If the engine is in good condition, correctly supplied with air (ie turbochargers in good condition and the resistance of the air and exhaust pipes is in the specifications) and the fuel injection quantity is correctly adjusted (see the shop test protocol), then the mean effective pressure (MEP) developed during service conditions (in accordance with the specified load indication), is related to the approximate MEP for this position on the test bed.

In the diagram (see [Figure 3-5](#)), the propeller property line through the CMCR point (100% power at 100% engine speed) is known as the nominal propeller property. Engines that are used for the propulsion of vessels with fixed propellers have a load applied on the test bed in accordance with this propeller property. But, during sea trial of a new ship with a smooth and clean hull, the applicable power is lower and the operation point is below the nominal propeller property.

During operation, a higher torque is necessary for the propeller to keep its speed than at the time of the sea trial (sea margin) because:

- There are changes in wake flow conditions because of marine growth on the hull
- The cargo load has an effect on the depth of the vessel in the water
- The propeller has a rough surface or has mechanical damage
- The vessel operates in bad sea and weather conditions
- The vessel operates in shallow water. The MEP of the engine (and thus the fuel injection quantity) will increase. In such a condition, the operation point will then be at the left of the initial propeller curve which was calculated during sea trials.

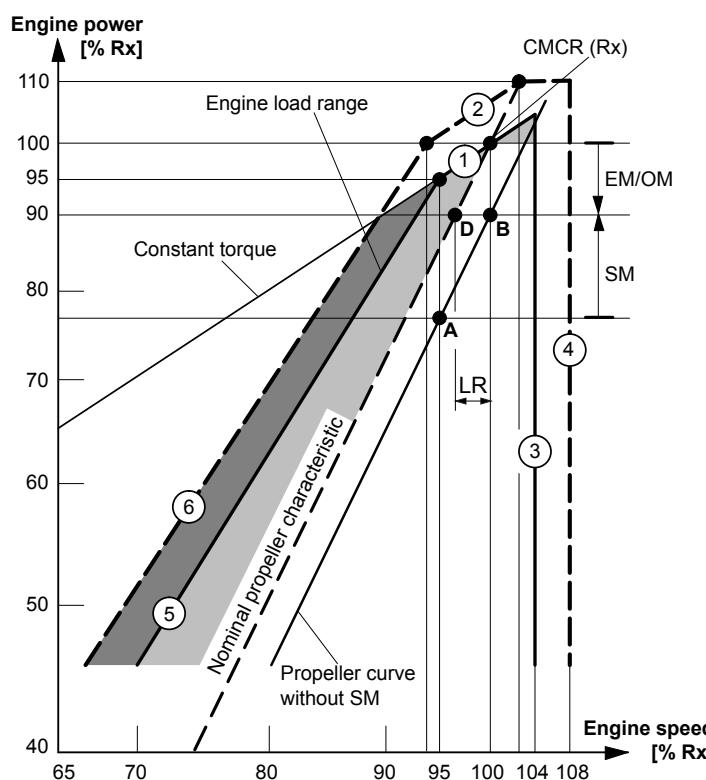
A hull that was cleaned and painted will help to decrease the resistance as the vessel moves through the water. It is not possible to get the hull back to its initial condition.

Because the thermal load of the engine is related to the MEP, the position of the operation point is also important. The air supply to the engine and the operation conditions will become unsatisfactory if the operation point is far above the propeller curve.

To get the best conditions, the operation point of the engine for service range must be on or below the nominal propeller property.

3.3.2 Fixed pitch propeller (FPP)

3.3.2.1 Continuous service rating


Point A (Figure 3-5) shows the power and speed of a ship that operates at contractual speed in calm seas with a new clean hull and propeller. A power / speed combination at point D is necessary for the same ship at the same speed during service conditions with aged hull and average weather. Point D is then the CSR point.

3.3.2.2 Engine margin / operational margin

Most owners specify the contractual loaded service speed of the ship at 85% to 90% of the contract maximum continuous rating (CMCR). The remaining 10% to 15% of power can be used to catch up with changes in schedules or for the timing of dry-dock intervals. This margin is usually subtracted from the CMCR. Thus, to get the 100% power line, you divide the power at point D by between 0.85 to 0.90.

3.3.2.3 Load range limits

Fig 3-5 Schematic diagram - Relation Speed/Power (FPP)

00117

When the engine has the best values at CMCR (R_x), the limits that follow give the load range of the engine:

- Line 1 is a constant MEP or torque line through CMCR from 100% speed and power down to 95% speed and power.

- Line 2 is the overload limit. This is a constant MEP line from 100% power and 93.8% speed to 110% power and 103.2% speed. 103.2% speed is the intersection point between the nominal propeller property and 110% power.
- Line 3 is the 104% speed limit where an engine can operate continuously. For R_x with decreased speed ($N_{CMCR} \leq 0.98 N_{MCR}$) this limit can be extended to 106%, but, the torsional vibration must not be more than the specified limits.
- Line 4 is the overspeed limit. The overspeed range between 103.5% (104%) and 105.5% speed is only permitted during sea trials if necessary. This is to demonstrate the speed of the ship at CMCR power with a light running propeller in the presence of authorized representatives of the engine builder. The torsional vibration must not be more than the specified limits.
- Line 5 is the permitted torque limit from 95% power and speed to 45% power and 70% speed. This shows a curve defined by the equation: $P_2 \div P_1 = (N_2 \div N_1)^{2.45}$. When the engine speed and power is near the data in Line 5 there will be a decrease in scavenging air, which has an effect on the engine. The area between Lines 1, 3 and 5 show the range in which the engine must be operated. The area in the nominal propeller property, 100% power and Line 3 is recommended for continuous operation. The area between the nominal propeller property and Line 5 must be reserved for acceleration, shallow water and usual flexibility of operation.
- Line 6 gives the equation: $P_2 \div P_1 = (N_2 \div N_1)^{2.45}$ through 100% power and 93.8% speed and the maximum torque limit in transient conditions. The area above Line 1 is the overload range. You must only operate the engine in this range for a maximum of one hour during sea trials in the presence of authorized representatives of the engine builder. The area between Lines 5 and 6 and the constant torque line (shown as a dark area) must only be used for transient conditions, ie during fast acceleration. This range is known as the service range with operational time limit.

4 Design and function of systems

4.1	General for systems.....	74
4.2	Cooling water system.....	76
4.3	Wash-water system.....	78
4.4	System oil system.....	80
4.5	Servo oil system.....	82
4.6	Cylinder oil system.....	84
4.7	Starting air system.....	86
4.8	Scavenge air system.....	88
4.9	Control air system.....	90
4.10	Exhaust gas system.....	92
4.11	Fuel system.....	94
4.12	Gas system.....	98
4.13	Pilot fuel system.....	100
4.14	HP Selective catalytic reduction system.....	102
4.15	LP Selective catalytic reduction system.....	122
4.16	Steam production control system.....	136

4.1 General for systems

In the chapters that follow you can find a short description of the systems of the engine. The descriptions and figures are generic and simplified.

You can find an overview of the used line codes in [Figure 4-1](#).

Fig 4-1 Line codes for systems

—————	001	=====	006
-----	002	-----	007
.....	003	----	008
—-----	004	—----	009
-----	005		

Legend

001	Main supply pipe	006	Double wall pipe
002	Drain / leakage pipe	007	Heating pipe
003	Vent pipe	008	Insulated pipe
004	Waste pipe (dirty drain pipe)	009	Trace heated and insulated pipe
005	Optional pipe		

Page left intentionally blank

4.2 Cooling water system

The cooling water system supplies the items that follow with cooling water:

- Cylinder liner
- Cylinder cover
- Exhaust valve cages
- Scavenge air cooler (SAC).

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The cooling water system has the engine connections as interface to the plant as follows (in [Figure 4-2](#) marked with a circle):

- Connection 01 (cylinder cooling water inlet)
- Connection 02 (cylinder liner cooling water inlet (bypass cooling water system)) (optional)
- Connection 03 (cylinder cooling water outlet)
- Connection 05 (cylinder cooling water drain outlet)
- Connection 07 (SAC LT-cooling water inlet) (not shown)
- Connection 08 (SAC LT-cooling water outlet) (not shown).

If the supply at the engine connection 02 is installed, the cylinder liner is supplied with cooling water at a higher temperature than the cylinder cover.

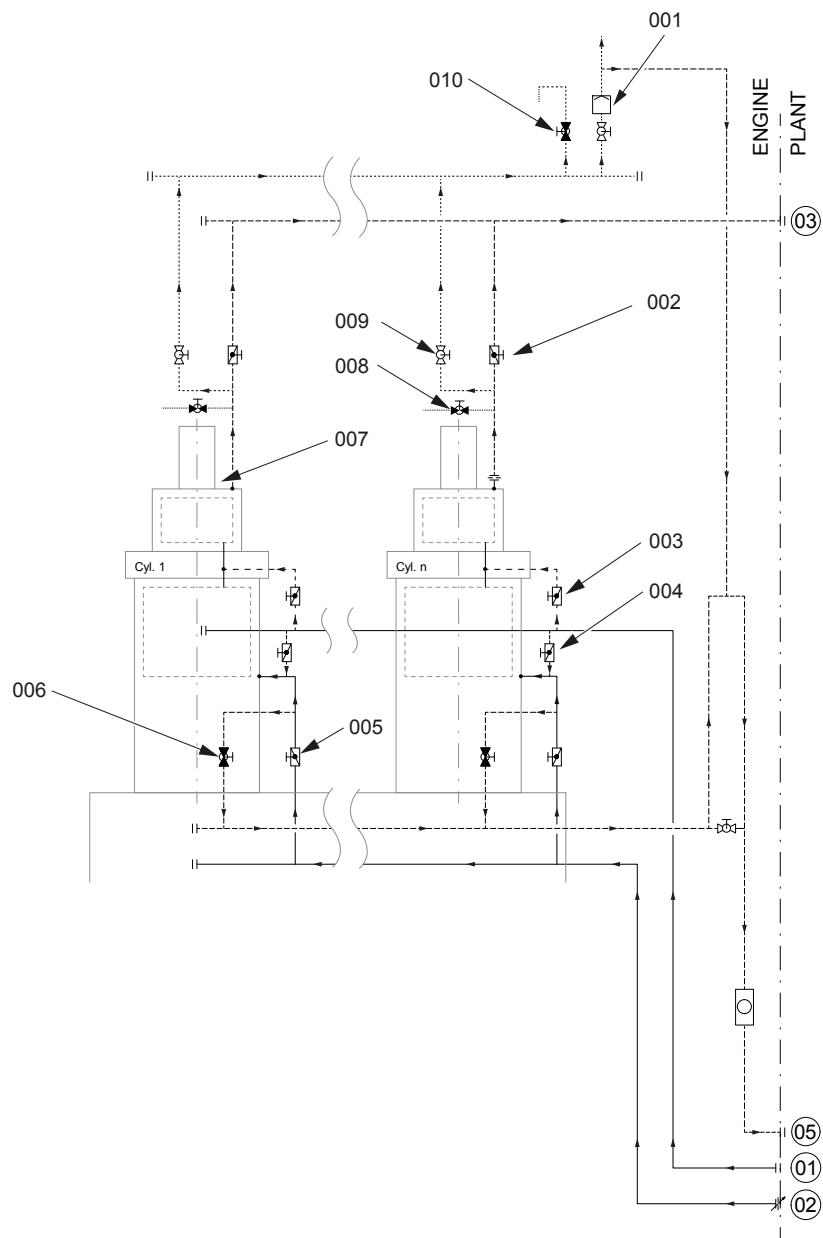
The cooling water system has the parts that follow:

- **Automatic venting unit**

The automatic venting unit (001) constantly releases unwanted air from the cooling water.

- **Optional vent valve**

The optional vent valves (008) can be used manually to release unwanted air from the cooling water, if the automatic venting unit (001) does not operate correctly.


- **Vent valve**

The vent valves (009) constantly release cooling water to the automatic venting unit (001) to release unwanted air from the cooling water.

- **Vent valve**

The vent valve (010) can be used manually to release unwanted air from the cooling water, if the automatic venting unit (001) does not operate correctly.

Fig 4-2 Cooling water system (generic and simplified)

Legend

001	Automatic venting unit	006	Drain valve
002	Shut-off valve cooling water outlet	007	Orifice
003	Shut-off valve, if supply 02 is installed	008	Optional vent valve (usually closed)
004	Shut-off valve, if supply 02 is not installed	009	Vent valve (usually open)
005	Shut-off valve	010	Vent valve (usually closed)

4.3 Wash-water system

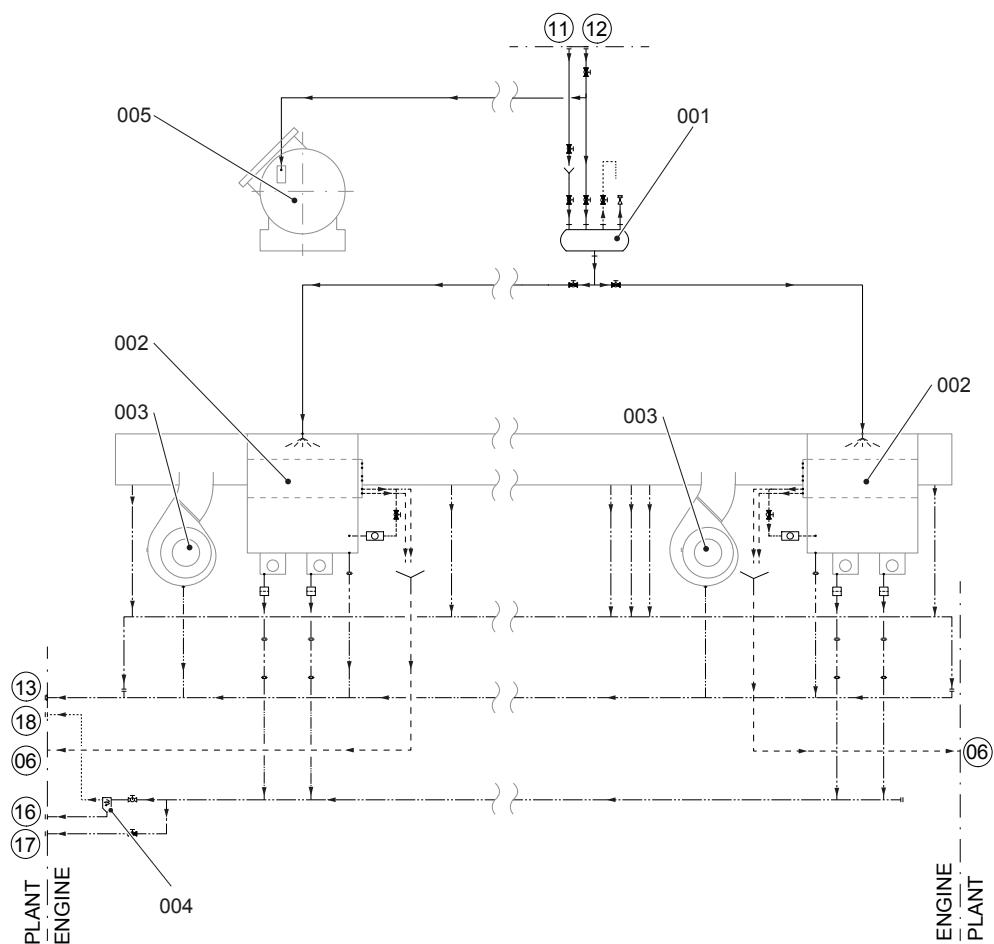
The wash-water system supplies the scavenge air cooler (SAC) with wash-water. This lets you wash the SAC, refer to [9.4 Clean the scavenge air cooler during operation](#). To regularly wash the SAC increases the service life of the cooler and keeps the performance in the specified range.

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The wash-water system has the engine connections as interface to the plant as follows (in [Figure 4-3](#) marked with a circle):

- Connection 06 (SAC drain outlet) (for X35 and X40)
- Connection 11 (water for cleaning plant for TC and SAC inlet)
- Connection 12 (air for cleaning plant for TC and SAC inlet)
- Connection 13 (oily water from receiver outlet)
- Connection 16 (SAC condensate water outlet)
- Connection 17 (SAC wash-water outlet) (optional)
- Connection 18 (SAC venting).

Condensation and wash-water flow through the cyclone separator and back to the plant at the connection 16.


The wash-water system has the parts that follow:

- **Wash-water tank**

The wash-water tank (001) keeps the wash-water for the wash procedure of the SAC. Compressed air is used to pressurize the wash-water tank before the wash procedure.

- **Cyclone separator**

The cyclone separator (004) separates the air and the wash-water.

Fig 4-3 Wash-water system (generic and simplified)**Legend**

001	Wash-water tank	004	Cyclone separator
002	Scavenging air cooler (SAC)	005	Turbocharger
003	Auxiliary blower		

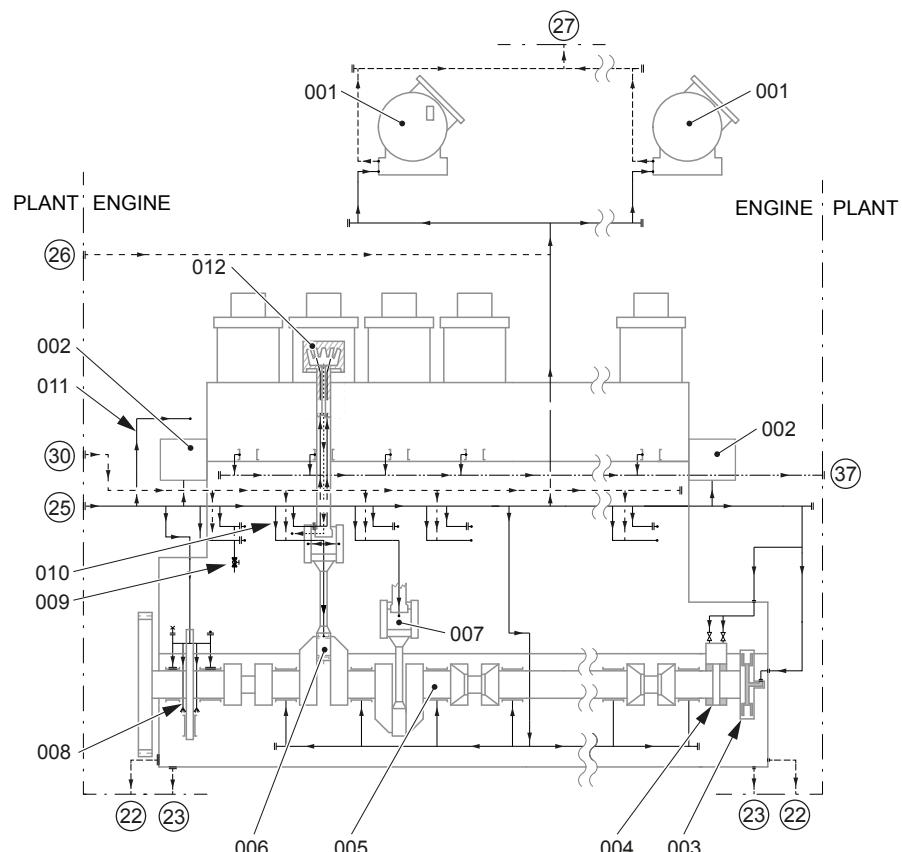
4.4 System oil system

The system oil system supplies the items that follow with system oil:

- Bearings
- Gear wheels
- Vibration dampers
- Pistons
- Crosshead assemblies
- iELBA (optional)
- Other running parts
- Servo oil system.

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The system oil system has the engine connections as interface to the plant as follows (in [Figure 4-4](#) marked with a circle):


- Connection 22 (oil drain bedplate horizontal) (if applicable)
- Connection 23 (oil drain bedplate vertical)
- Connection 25 (main oil inlet)
- Connection 26 (lubricating oil turbocharger inlet) (optional)
- Connection 27 (lubricating oil turbocharger outlet)
- Connection 30 (lubricating oil crosshead inlet) (optional)
- Connection 37 (leakage oil gland box outlet).

System oil from the bearings and gear wheels drops into the crankcase.

The system oil system has the parts that follow:

- **Oil pipes**
The oil pipes connect the items that use oil.
- **Lever**
The levers (010) in the crankcase supply the oil to the crosshead.
- **Oil sample valve**
Use the oil sample valve (009) to get a sample of the supplied oil.

Fig 4-4 System oil system (generic and simplified)

Legend

001	Turbocharger	007	Crosshead
002	iELBA (optional)	008	Thrust bearing
003	Torsional vibration damper (optional)	009	Oil sample valve
004	Axial vibration damper	010	Lever
005	Main bearing	011	Supply pipe to servo oil system
006	Crank bearing	012	Piston

4.5 Servo oil system

The servo oil system supplies the items that follow with servo oil:

- Exhaust valve control units (VCU)
- Cylinder lubricating pumps
- Injection control units, if applicable.

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The system oil system supplies the servo oil through the supply pipe.

The servo oil system has the parts that follow:

- **Oil pipes**

The oil pipes connect the items that use oil. All the high pressure oil pipes have double wall. Inspection points in the pipes let find oil leaks.

- **Servo oil service pump**

The servo oil service pump (005) can supply the servo oil system with oil before the engine start or during maintenance.

- **Servo oil pump (number related to the configuration)**

The servo oil pumps (004) supply the servo oil system with oil during usual operation.

- **Servo oil rail**

The servo oil rail (007) supplies the exhaust valve control units with servo oil at approximately 200 to 300 bar.

- **Exhaust valve control unit**

The exhaust valve control units (VCU) (002) control the servo oil flow to the exhaust valve. From the first exhaust valve control unit some of the oil flows to the pressure reducing valve.

- **Pressure reducing valve**

The pressure reducing valve (009) decreases the servo oil pressure to the value that is necessary in the distributor pipe (mini-rail).

- **Distributor pipe (mini-rail)**

The distributor pipe (mini-rail) (010) supplies the cylinder lubricating pumps with servo oil at approximately 60 to 65 bar.

Page left intentionally blank

4.6 Cylinder oil system

The cylinder oil system supplies cylinder oil onto the cylinder liners. The engine control system (ECS) controls the adjustable load-related supply rate of cylinder oil to each lubrication point.

The engine has an automatic pre-lubrication sequence. At each engine start the ECS automatically starts this sequence. This makes sure that the cylinders are sufficiently lubricated. The sequence includes a specified number of lubrication pulses. For the specified number refer to chapter 11 Technical data.

NOTE: You can also start the pre-lubrication sequence manually.

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The cylinder oil is used only one time.

The cylinder oil system has the parts that follow:

- **Oil pipes**

The oil pipes connect the items that use oil.

- **Duplex oil filter**

The duplex oil filter (004) filters the oil before it flows to the cylinder lubricating pumps. The change-over valve makes it possible to shut off one filter chamber.

- **Cylinder lubricating pump**

Each cylinder has a cylinder lubricating pump (003). Servo oil operates the cylinder lubricating pumps. The ECS controls the cylinder lubricating pumps.

- **Lubricating quill**

The lubricating quills (002) spray cylinder oil onto the running surface of the cylinder liners. The lubricating quills are installed on the circumference of the cylinder liner.

- **Oil sample valve**

To drain a sample of dirty oil, use the oil sample valve (001) at the cylinder liner underside.

- **iCAT (if installed)**

The iCAT system (integrated Cylinder lubricant Auto Transfer system) automatically selects the cylinder oil with the correct base number (BN) related to the fuel in use. If necessary, the iCAT system automatically changes over the cylinder oil. The change-over valve (007) is near the cylinder lubricating pump (003). Thus the correct cylinder oil is immediately supplied to the cylinder liner. The engine control system (ECS) controls the iCAT system.

NOTE: You have to enter the correct basic values (eg the sulfur content of the fuels) for the iCAT system in the RCS, refer to the related documentation.

Page left intentionally blank

4.7 Starting air system

The starting air system turns the crankshaft before the usual combustion cycle of the engine is started.

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The starting air system has the engine connections as interface to the plant as follows (in [Figure 4-5](#) marked with a circle):

- Connection point 40 (starting air pipe inlet)
- Connection point 41 (venting crankcase outlet)
- Connection point 45 (control air supply inlet).

The starting air system has the parts that follow:

- **Starting air shut-off valve**

The starting air shut-off valve (009) supplies the starting air supply pipe with starting air. The starting air shut-off valve has three positions:

- CLOSED
- AUTO
- OPEN.

- **Starting air supply pipe**

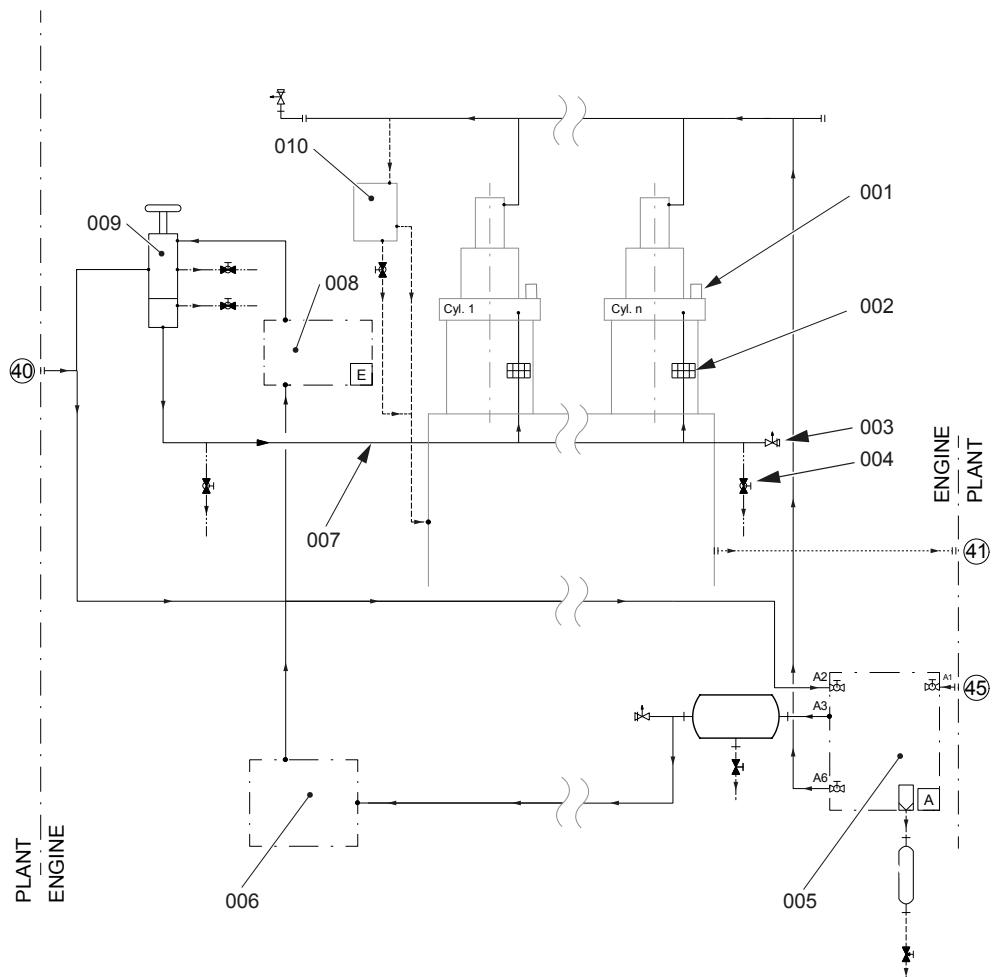
The starting air supply pipe (007) supplies the starting valves of each cylinder with starting air. The starting air supply pipe has a safety valve (003) and two drain valves (004).

- **Starting valve**

Each cylinder has a starting valve with a solenoid valve (001). Each starting valve supplies the related cylinder with the specified quantity of starting air at the correct time.

- **Valve unit for start E**

The valve unit for start E (008) supplies the starting air shut-off valve with control air.


- **Disengaging device turning gear**

When the turning gear is engaged, the disengaging device turning gear (006) closes the shut-off valve in the supply pipe. This prevents the supply of control air to the valve unit for start E, and thus prevents engine start.

- **Flame arrestor**

The flame arrestor (002) prevents combustion gas to flow back into the air pipe.

Fig 4-5 Starting air system (generic and simplified)

Legend

001	Solenoid valve	006	Disengaging device turning gear
002	Flame arrestor	007	Starting air supply pipe
003	Safety valve	008	Valve unit for start E
004	Drain valve	009	Starting air shut-off valve
005	Control air supply	010	Collector for leakage oil from the air spring

4.8 Scavenge air system

The scavenge air system replaces the exhaust gas in the cylinder with fresh air.

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The scavenge air comes in from the outside through a duct or from the engine room. The scavenge air enters at the silencer of the turbocharger.

The scavenge air system has the parts that follow:

- **Scavenge air receiver**

The scavenge air receiver (013, [Figure 4-6](#)) supplies the cylinders with the applicable quantity of air.

- **Turbocharger**

The compressor (005) of the turbocharger compresses the air to the applicable pressure. The compressor is attached to the shaft of the turbine (004). The remaining energy of the exhaust gas operates the turbine and thus the compressor.

- **Auxiliary blower**

The two auxiliary blowers (010) supply the scavenge air at the engine start and during low load operation.

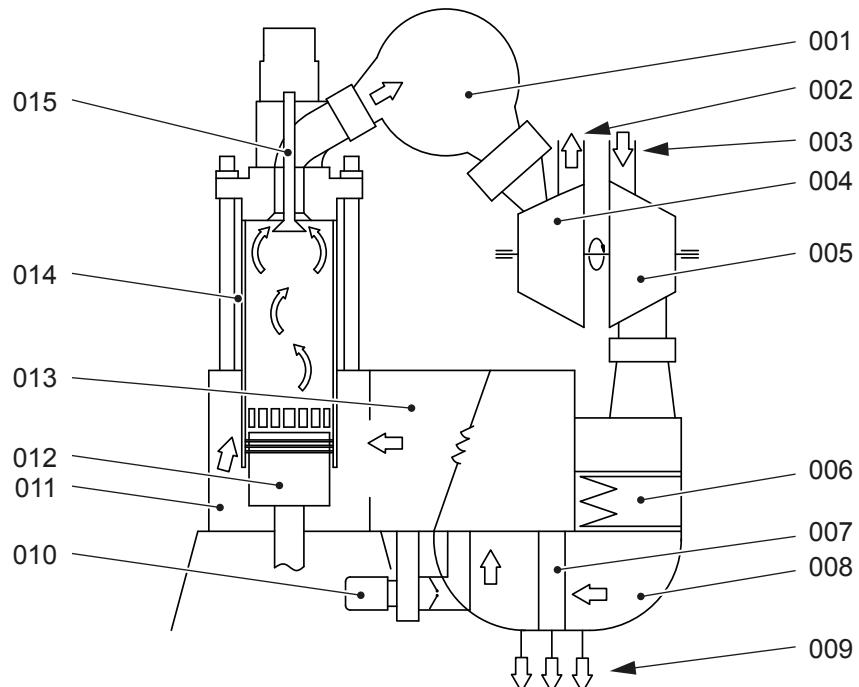
- **Auxiliary blower switch box**

The auxiliary blower switch box controls the auxiliary blowers.

- **Scavenge air cooler**

The scavenge air cooler (SAC) (006) decreases the temperature of the hot compressed air from the turbocharger. This increases the mass of air and thus increases the quantity of air that is supplied to the cylinders.

- **Water separator**


The water separator (007) removes water from the scavenge air. This prevents damage and gives better combustion in the cylinders. Water occurs when the scavenge air cooler decreases the temperature of wet air. Water also occurs during the wash procedure of the SAC.

- **Drains**

The scavenge air system has the drains (009) that follow:

- Condensation drain from the scavenge air cooler
- Water drain from the water separator
- Oily water drain.

Fig 4-6 Scavenge air system

00148

Legend

001	Exhaust gas manifold	009	Drains
002	Exhaust gas outlet	010	Auxiliary blower
003	Scavenge air inlet	011	Piston underside
004	Turbine	012	Piston
005	Compressor	013	Scavenge air receiver
006	Scavenge air cooler	014	Cylinder liner
007	Water separator	015	Exhaust valve
008	Charging unit		

4.9 Control air system

The control air system supplies the air spring of the exhaust valves and the starting air system with control air.

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The control air system has the parts that follow:

- **Control air supply**

The control air supply (002) decreases the supply air pressure to the specified pressures.

- **Air tank**

The air tank (003) is a container for control air. If the two plant air supply systems become defective, the air tank supplies control air to the engine for a short period.

- **Air bottle**

The air bottle (001) collects condensation from the starting air.

- **Collector for leakage oil from the air spring**

The collector for leakage oil from the air spring (007) controls the oil leakage from the air spring of the exhaust valves with a float control. When the collector pipe is full, the shut-off valve opens and the oil flows into the crankcase.

Page left intentionally blank

4.10 Exhaust gas system

The exhaust gas system collects the exhaust gas of the cylinders in a manifold. The remaining energy of the exhaust gas is used to operate the turbine of the turbocharger.

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The exhaust gas system has the parts that follow:

- **Exhaust valve**

The exhaust valve (004) of each cylinder releases the exhaust gas of the combustion into the exhaust gas manifold.

- **Exhaust gas manifold**

The exhaust gas manifold (003) collects the exhaust gas from the cylinders.

- **Turbocharger bypass pipe**

Usually the engine has a turbocharger bypass pipe (001) for different operating conditions.

Page left intentionally blank

4.11 Fuel system

The fuel system supplies the injection valves of the cylinders with the applicable quantity of fuel.

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The fuel system has the engine connections as interface to the plant as follows (in [Figure 4-7](#) and [Figure 4-8](#) marked with a circle):

- Connection 49 (fuel inlet)
- Connection 50 (fuel return outlet)
- Connection 51 (fuel leakage rail unit outlet)
- Connection 52 (fuel leakage outlet)
- Connection 57 (leakage outlet)
- Connection 59 (trace heating fuel inlet)
- Connection 60 (trace heating fuel outlet)
- Connection 67 (fire extinguishing plant cylinder block inlet).

The constant flow of fuel through the fuel system keeps the fuel warm.

At low load the ECS automatically cuts out injection valves in each cylinder as follows:

- For an engine with two injection valves - one of the two injection valves
- For an engine with three injection valves - one or two of the three injection valves.

This makes sure that the engine has the best fuel and combustion properties, which decreases smoke and fuel consumption. The ECS cuts out a different injection valve at regular intervals to get an equal thermal load in the combustion chamber. There is no time limit to operate the engine at low load.

The fuel system has the parts that follow:

- **Fuel pipes**

The fuel pipes connect the items of the fuel system. All the fuel pipes have a trace heating to keep the fuel warm during operation and for short engine stops. The high pressure fuel pipes that are not in the rail unit have a double wall design and leakage inspection points.

- **Pressure retaining valve**

The adjustable pressure retaining valve (009) in the return pipe keeps the fuel pressure in the supply pipe to the fuel pumps at the correct value.

- **Supply unit**

The supply unit (007) holds the fuel pumps and the related items.

- **Fuel pump (number related to the configuration)**

The fuel pumps (008) supply the fuel rail with fuel at up to 1000 bar.

- **Fuel rail**

Depending on the specific engine the fuel rail (004) supplies the flow limiting valves or the injection control units with fuel.

- **Non-return valve**

The non-return valves prevent fuel flow back from the fuel rail to the fuel pumps (eg if a fuel pump has no delivery, or a fuel pipe is defective).

- **Pressure control valve**

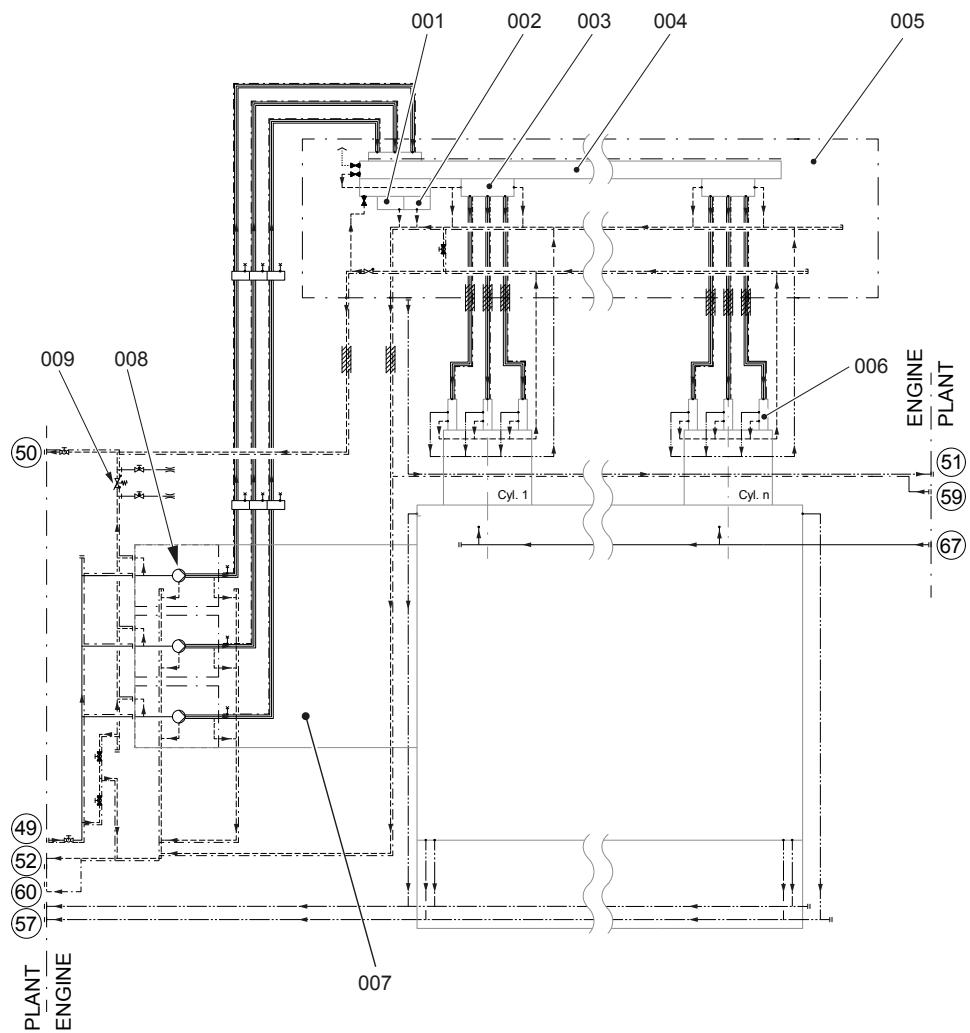
The pressure control valve (001) has different functions to control the flow and the pressure in the fuel rail.

- **Relief valve**

The relief valve (002) is a safety device. If the fuel pressure increases to more than the set value, the relief valve opens.

- **Flow limiting valve (optional)**

The flow limiting valves (003) can be installed on the fuel rail supply fuel to the related injection valves with the adjusted quantity of fuel.


- **Injection control unit (optional)**

The injection control units (003) can be installed on the fuel rail supply fuel to the related injection valves with the adjusted quantity of fuel.

- **Injection valve**

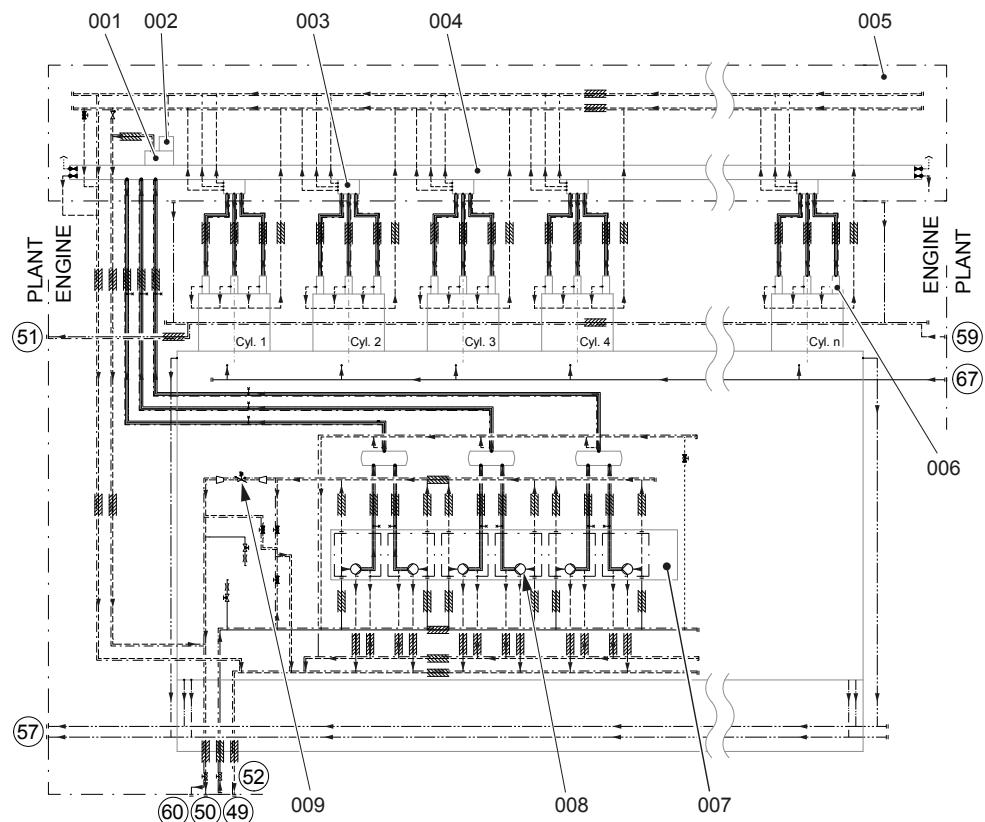

The injection valves (006) supply the fuel into the combustion chamber as a spray.

Fig 4-7 Fuel system with FLV (generic and simplified)

Legend

001	Pressure control valve	006	Injection valve
002	Relief valve	007	Supply unit
003	Flow limiting valve (FLV)	008	Fuel pump
004	Fuel rail	009	Pressure retaining valve
005	Rail unit		

Fig 4-8 Fuel system with ICU (generic and simplified)

Legend

001	Pressure control valve	006	Injection valve
002	Relief valve	007	Supply unit
003	Injection control unit (ICU)	008	Fuel pump
004	Fuel rail	009	Pressure retaining valve
005	Rail unit		

4.12 Gas system

The gas system supplies the gas admission valves (GAV) of the cylinders with the applicable quantity of gas.

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The gas system has the engine connections as interface to the plant as follows (in [Figure 4-9](#) marked with a circle):

- Connection 25 (main oil inlet)
- Connection 34 (leakage oil of driving end outlet)
- Connection 35 (leakage oil of free end outlet)
- Connection 38 (oil pipe drain of supply unit outlet)
- Connection 52 (fuel leakage outlet)
- Connection 76 (supply unit fuel pilot valve inlet)
- Connection 77 (supply unit fuel pilot valve outlet)
- Connection 78 (gas supply pipe inlet)
- Connection 79 (gas release pipe, engine side outlet)
- Connection 80 (gas release pipe, system side outlet)
- Connection 81 (ventilation air annular space inlet)
- Connection 82 (gas monitoring pipe piston under side).

The gas system is continuously monitored with gas detectors installed in the gas pipes. If there is a gas leak, the gas detectors will activate an alarm.

When there is a fire alarm in the engine room and the engine operates in gas mode, the engine control system automatically changes to diesel mode (gas trip) and closes the master gas fuel valve.

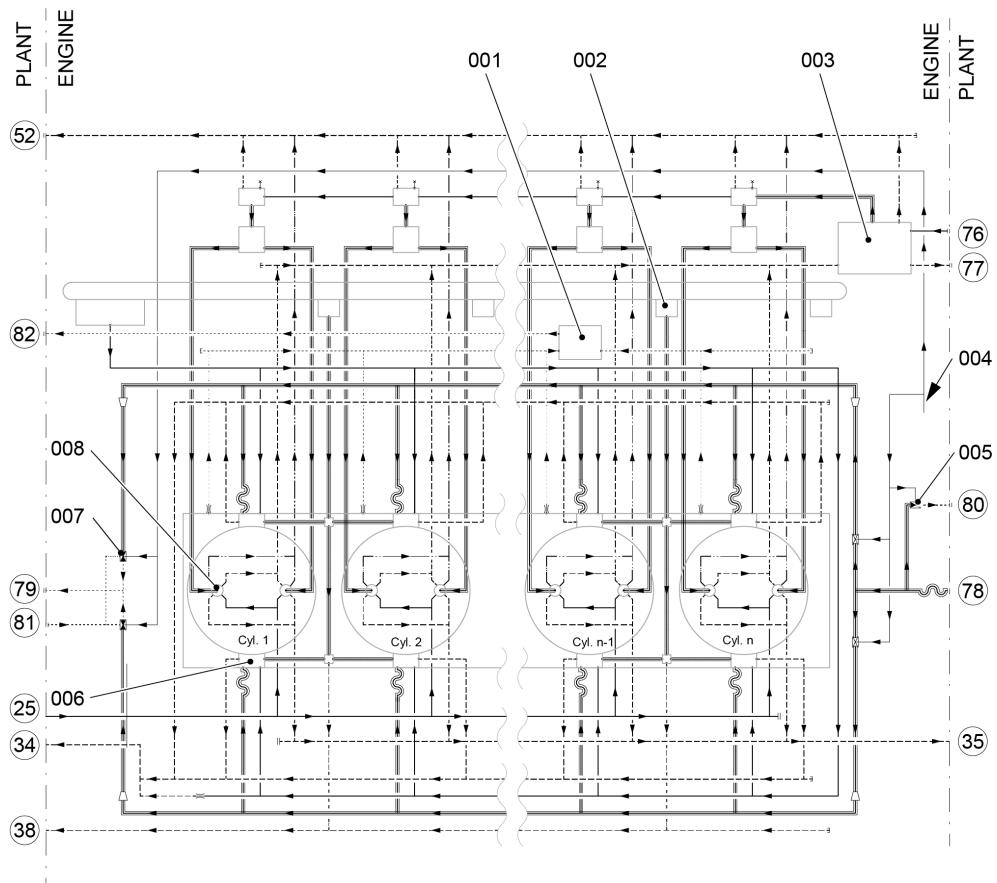
The gas system has the parts that follow:

- **Gas pipes**

The gas pipes connect the items of the gas system. All the gas pipes have a double wall design. The annular spaces of the double wall pipes have open pipes to the atmosphere. Fans cause a negative air pressure in the annular spaces. The air flows through the annular spaces to the fans. The fans release the air and possible gas leakages to the atmosphere.

- **Shut-off valve**

The shut-off valves (005) on the fuel side and on the exhaust side isolate the gas supply to the engine, if there is a gas leakage on the engine. The shut-off valves also isolate the gas supply, if the engine runs in diesel mode.


- **Vent valve**

The vent valves (007) on the fuel side and on the exhaust side release the remaining gas to the atmosphere, when the shut-off valves are closed.

- **Gas admission valve (GAV)**

The gas admission valves (GAV) (006) supply the gas to the related cylinders.

Fig 4-9 Gas system (generic and simplified)

Legend

001	Gas detection	005	Shut-off valve
002	Exhaust valve control unit (VCU)	006	Gas admission valve (GAV)
003	Pilot fuel pump unit	007	Vent valve
004	Control air supply	008	Pilot fuel valve

4.13 Pilot fuel system

The pilot fuel system supplies the pilot injection valves of the cylinders with the applicable quantity of pilot fuel.

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

The pilot fuel system has the engine connections as interface to the plant as follows:

- Connection 76 (pilot fuel inlet)
- Connection 77 (pilot fuel outlet).

Pilot fuel is diesel fuel and is used in gas mode to start the ignition of the gas-air mixture.

The pilot fuel system also operates with a decreased quantity of fuel injection during engine operation in diesel mode. This prevents contamination on the ends of the pilot injection valves and the prechambers.

The pilot fuel system has the parts that follow:

- **Pilot fuel pipes**

The pilot fuel pipes connect the items of the pilot fuel system. The HP pilot fuel pipes have a double wall design.

- **Supply unit pilot fuel**

The supply unit pilot fuel increases the pressure of the pilot fuel to the necessary value.

- **Pilot injection valve**

The pilot injection valves supply the pilot fuel to the related cylinders.

Page left intentionally blank

4.14 HP Selective catalytic reduction system

The high pressure selective catalytic reduction (HP SCR) system is an optional system to decrease the level of nitrogen oxides in the exhaust gas. This makes sure that the emissions of nitrogen oxides obey the Tier III regulations of the International Maritime Organization (IMO).

Nitrogen oxides are dangerous and are made in secondary reactions in the engine during fuel combustion.

The HP SCR system is installed between the exhaust gas manifold and the turbocharger. The system design and the supply of components is divided between the HP SCR system supplier, the shipyard and WinGD/engine builder.

The HP SCR system adds an urea water solution as reducing agent to the exhaust gas flow. Chemical reactions change nitrogen oxides to molecular nitrogen and water, which are not dangerous.

NOTE: For a DF engine - the HP SCR system can only be used in diesel mode.

4.14.1 Description of the HP SCR system

NOTE: The HP SCR system can be used for an engine with one or two turbochargers.

The HP SCR system has the parts that follow (refer to [Figure 4-10](#)):

- **Urea solution supply unit**

The urea solution supply unit has the two parts that follow:

- The urea solution pump unit supplies the urea solution from the tank to the urea solution dosing unit and keeps the applicable pressure in the related pipes.
- The urea solution dosing unit controls the supply of urea solution to the mixing duct.

- **Mixing duct**

The mixing duct has an injection lance, which is a double wall pipe. In the inner part, the urea solution is supplied. In the outer part, compressed air is supplied. In the injection nozzle at the end of the lance the two components are mixed and injected through holes into the exhaust gas flow.

After the injection of the urea solution the heat of the exhaust gas changes the water into steam. The high temperature also changes the urea ($(\text{NH}_2)_2\text{CO}$) into ammonia (NH_3) and carbon dioxide (CO_2). Installations in the mixing duct make the gases to equally mix. Then the gases flow to the reactor.

- **Reactor**

The reactor has a steel wall and has an inlet and an outlet cone. A steel structure holds the catalyst layers. At the catalytic surface of the catalyst layers the nitrogen oxides (NO and NO_2) react with the ammonia into molecular nitrogen (N_2) and water (H_2O). These gases are part of the ambient air and are not dangerous.

Manholes in the reactor walls are used to examine and, if necessary, to clean or replace the catalyst elements.

- **Venting/sealing unit**

The venting/sealing unit supplies compressed air into the exhaust gas pipes for the functions that follow:

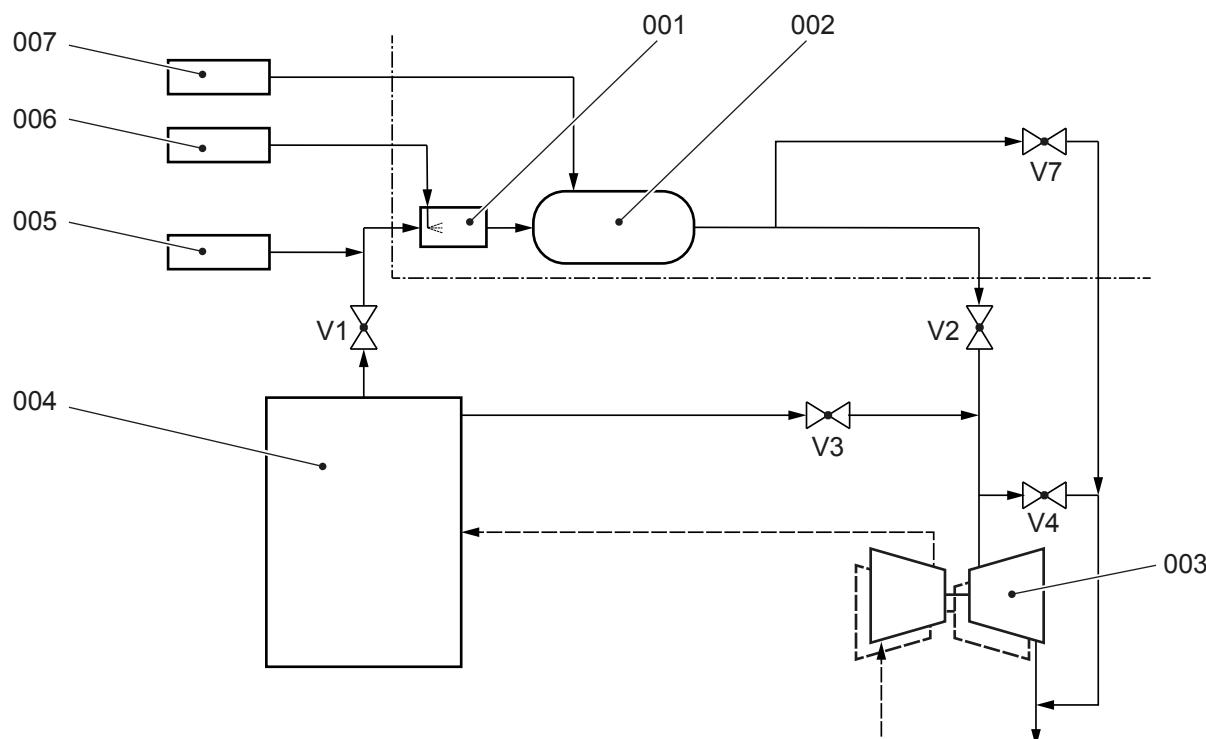
- Blow out the exhaust gas from the reactor and the pipes after stop of the HP SCR system
- Seal the reactor during HP SCR bypass operation.

- **Soot blowing unit**

The soot blowing unit removes soot deposits at regular intervals from the catalyst elements in the reactor.

- **Valves**

The valves in the HP SCR system are used for the different operation modes. The HP SCR system has the valves that follow. In parenthesis you find the position of the valves, if there is a complete stop of the current supply (fail position):


- V1 - Reactor inlet valve (FO - fail open)
- V2 - Reactor outlet valve (FO - fail open)
- V3 - Reactor bypass valve (FO - fail open)
- V4 - Turbine bypass valve (FC - fail closed)
- V7 - Reactor relief valve (FO - fail open).

NOTE: In the fail condition, the engine operates in Tier II mode.

The turbine bypass valve (V4) is also used for other functions of the ECS, E.g. for low-load tuning (LLT) or for steam production control (SPC).

For more data about the function of the valves, refer to the chapters that follow.

Fig 4-10 HP SCR system - layout

Legend

001	Mixing duct	005	Venting/sealing unit
002	Reactor	006	Urea solution supply unit
003	Turbine of turbocharger	007	Soot blowing unit
004	Engine		

The HP SCR system can be operated, if the exhaust gas temperature after the exhaust gas manifold is in the permitted limits shown in [Table 4-1 - Operation limits of exhaust gas temperature after exhaust gas manifold](#). A temperature that is less than the given limit can cause the catalyst elements to clog. A temperature that is more than the given limit can cause the catalyst elements to age faster.

Tab 4-1 Operation limits of exhaust gas temperature after exhaust gas manifold

Operation mode	T _{min}	T _{max}
Preparation (urea injection OFF)	200°C	470°C
Use of low sulphur fuel ($\leq 0.5\%$ S) (urea injection ON)	310°C	470°C
Use of high sulphur fuel ($> 0.5\%$ S) (urea injection ON) ¹	325 to 340°C ²	470°C

- 1 Refer to the HP SCR system documentation if the operation of the HP SCR system with high sulphur fuel is permitted.
- 2 The engine control system (ECS) calculates this value related to the engine load and to the exhaust gas pressure.

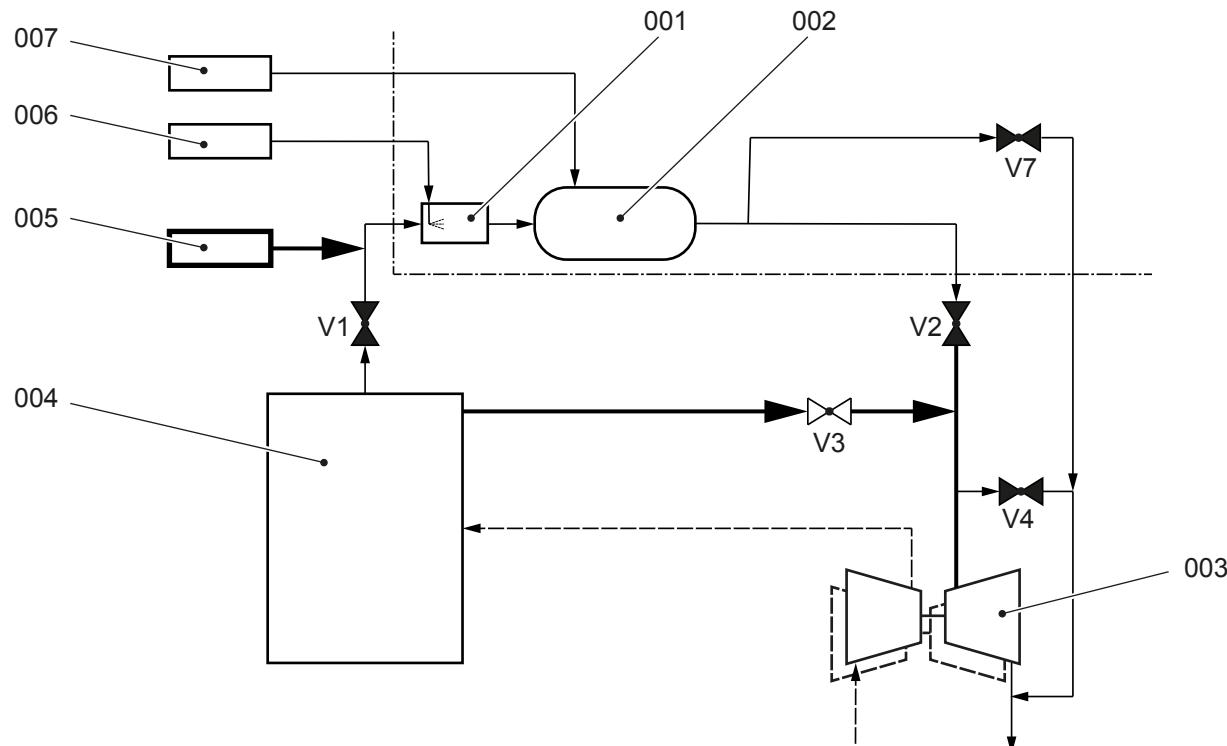
NOTE: WinGD recommends to do a test of the valves regularly during engine stop, refer to [Figure 4-24](#).

4.14.2 Operation modes

The HP SCR system has the operation modes that follow.

4.14.2.1 HP SCR system - emergency bypass

In this operation mode, the HP SCR system is bypassed. The HP SCR control system opens the valve V3 quickly. The engine operates in Tier II mode.


If necessary, you can start this operation mode manually. You use the related switch on one of the control boxes, refer to [Para 4.14.3](#).

The HP SCR control system changes to emergency bypass mode automatically, if a condition for correct operation of the HP SCR system is not given, for example if a bus connection is defective.

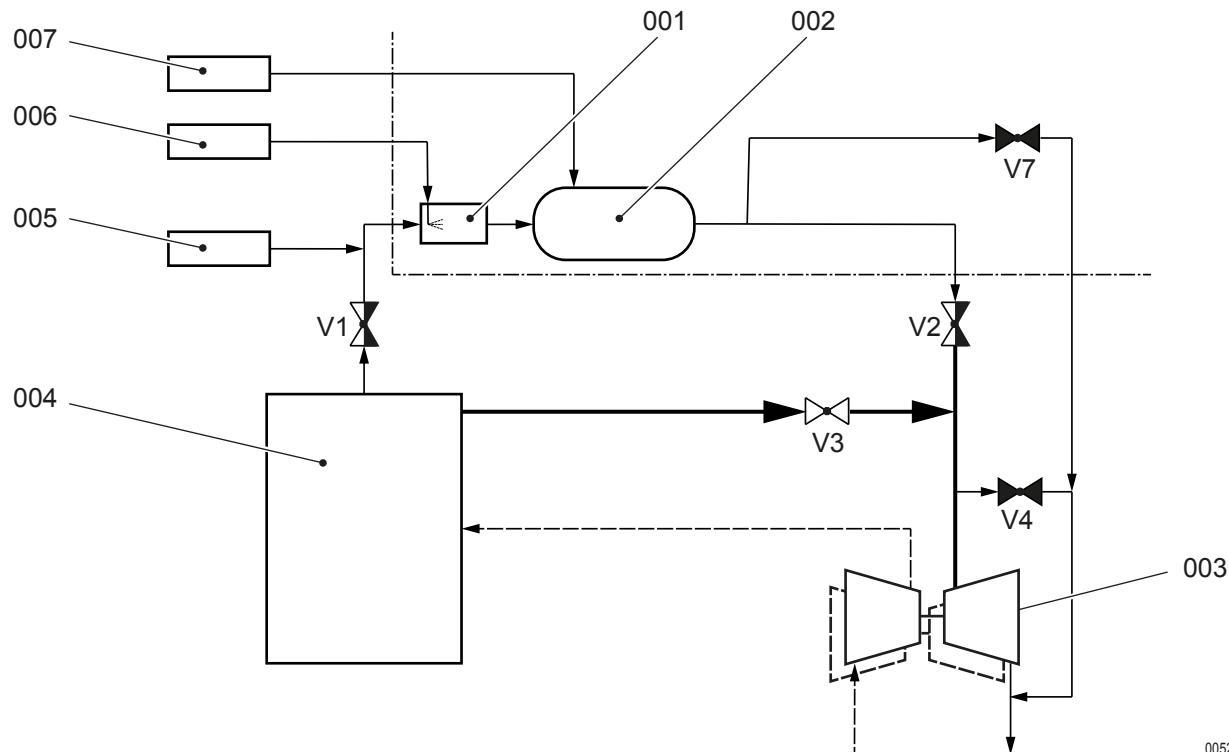
The valves have the conditions that follow:

- V1 - Closed
- V2 - Closed
- V3 - Open
- V4 - Controlled by the ECS
- V7 - Closed, can be opened to decrease the pressure in the reactor

Fig 4-11 HP SCR system - emergency bypass

Legend

001	Mixing duct	005	Venting/sealing unit
002	Reactor	006	Urea solution supply unit
003	Turbine of turbocharger	007	Soot blowing unit
004	Engine		


4.14.2.2 HP SCR system - bypass

In this operation mode, the HP SCR system is bypassed. The engine operates in Tier II mode. Urea solution is not injected.

If you change from Tier III mode to bypass mode, the HP SCR control system changes the valve conditions and starts the preservation sequence. If a condition for correct operation for Tier III mode is not given, the HP SCR control system automatically changes to bypass mode.

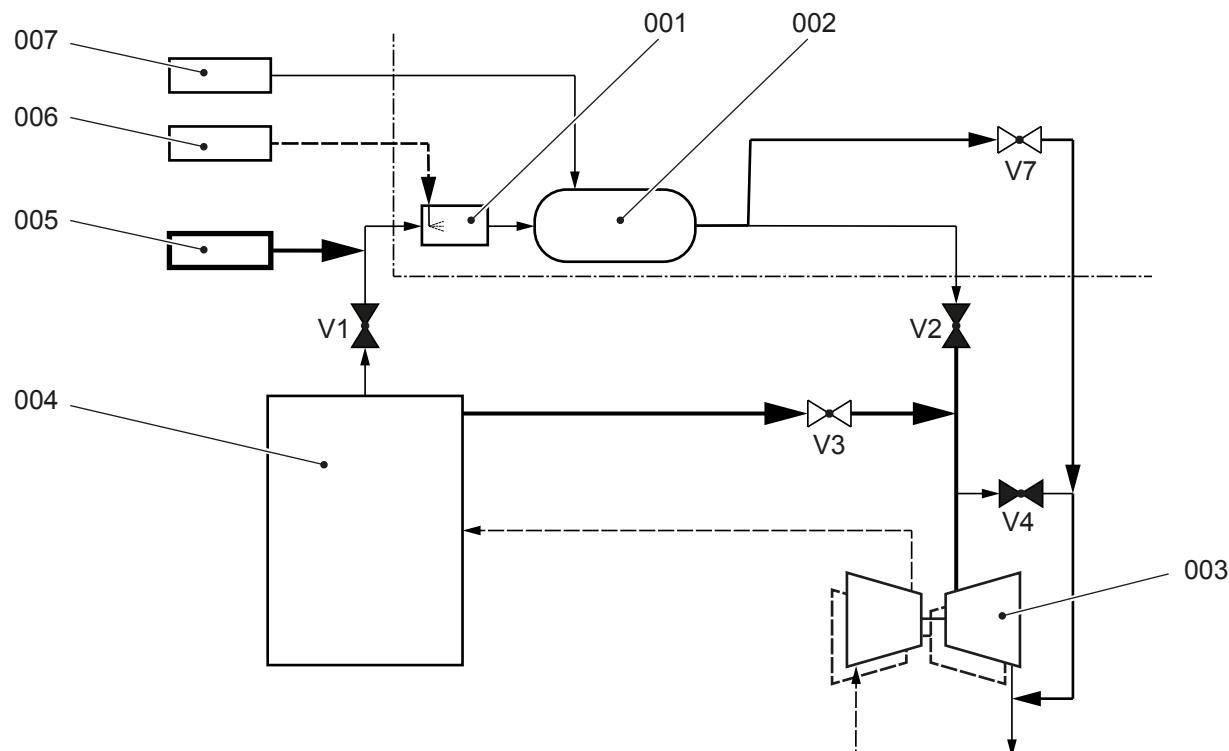
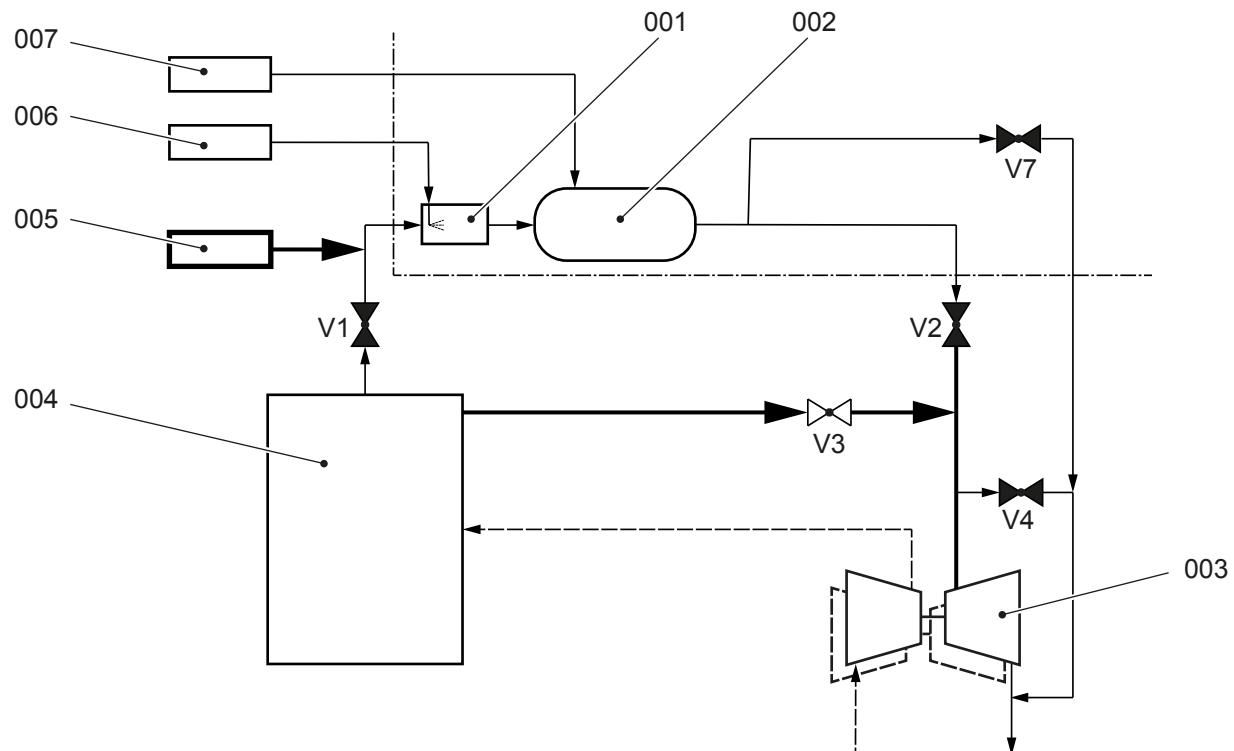

- First the valves have the conditions that follow (refer to [Figure 4-12](#)):
 - V1 - Slowly changes from open to closed
 - V2 - Slowly changes from open to closed
 - V3 - Open
 - V4 - Controlled by the ECS, can be more opened to decrease the scavenge air flow and thus to increase the exhaust gas temperature
 - V7 - Closed, can be opened to decrease the pressure in the reactor
- Then the preservation sequence starts as follows to prevent corrosion of the reactor and of the pipes (refer to [Figure 4-13](#)):
 - The purging sequence uses compressed air to remove the remaining urea solution from the injection equipment, from the pipes and from the reactor.
 - The venting/sealing unit starts and the valve V7 opens for some minutes. Thus the compressed air removes the exhaust gas to the exhaust gas system of the plant.
- If the venting/sealing unit is unserviceable, decrease the pressure in the reactor and drain the condensation.

Fig 4-12 HP SCR system - change from Tier III to bypass

Legend

001	Mixing duct	005	Venting/sealing unit
002	Reactor	006	Urea solution supply unit
003	Turbine of turbocharger	007	Soot blowing unit
004	Engine		


Fig 4-13 HP SCR system - purging and venting**Legend**

001	Mixing duct	005	Venting/sealing unit
002	Reactor	006	Urea solution supply unit
003	Turbine of turbocharger	007	Soot blowing unit
004	Engine		

After that procedure, or directly, the venting/sealing unit supplies compressed air to keep a pressure in the reactor and in the pipes. This makes a seal against the exhaust gas to prevent damage of the reactor. Make sure that the pressure in the reactor is more than the exhaust gas pressure.

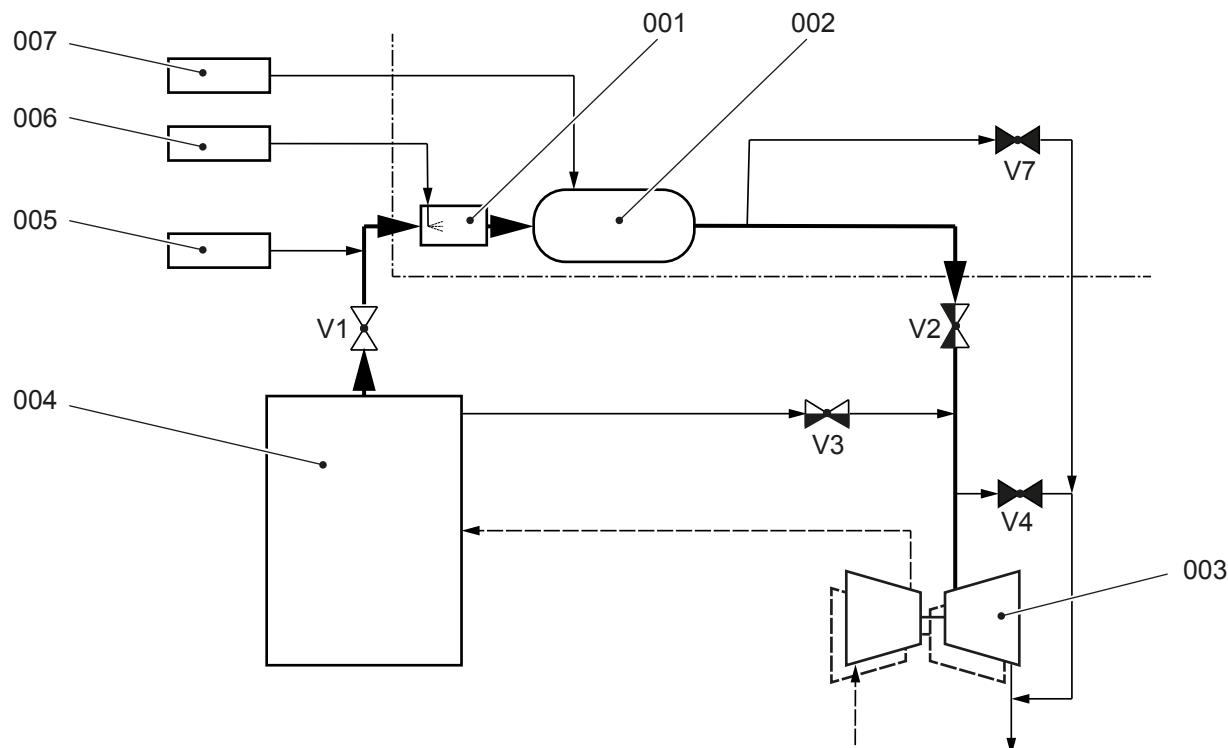
The valves have the conditions that follow:

- V1 - Closed
- V2 - Closed
- V3 - Open
- V4 - Controlled by the ECS
- V7 - Closed, can be opened to decrease the pressure in the reactor

Fig 4-14 HP SCR system - emergency bypass**Legend**

001	Mixing duct	005	Venting/sealing unit
002	Reactor	006	Urea solution supply unit
003	Turbine of turbocharger	007	Soot blowing unit
004	Engine		

4.14.2.3 HP SCR system - preparation


In this operation mode, exhaust gas causes the temperature of the HP SCR reactor to slowly increase. The engine operates in Tier II mode. Urea solution is not injected.

The valves have the conditions that follow:

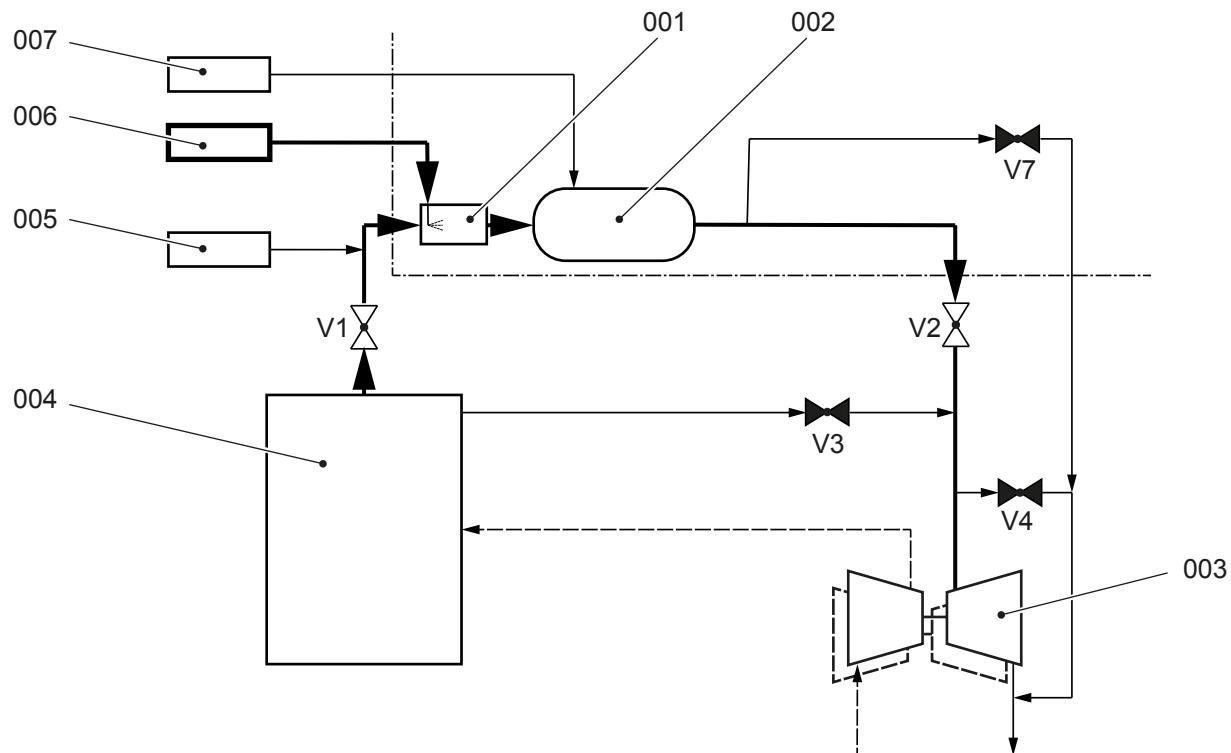
- V1 - Open
- V2 - Slowly changes from closed to open
- V3 - Slowly changes from open to closed
- V4 - Controlled by the ECS
- V7 - Closed

If necessary, you can operate the engine in this mode for longer periods, for example to be ready for a fast change to Tier III mode.

Fig 4-15 HP SCR system - preparation

Legend

001	Mixing duct	005	Venting/sealing unit
002	Reactor	006	Urea solution supply unit
003	Turbine of turbocharger	007	Soot blowing unit
004	Engine		


4.14.2.4 HP SCR system - Tier III

In this operation mode, the HP SCR system is set to ON. The engine operates in Tier III mode. Urea solution is injected.

The valves have the conditions that follow:

- V1 - Open
- V2 - Open
- V3 - Closed
- V4 - Controlled by the ECS, can be more opened to decrease the scavenge air flow and thus to increase the exhaust gas temperature
- V7 - Closed, can be opened to decrease the pressure in the reactor

Fig 4-16 HP SCR system - Tier III

Legend

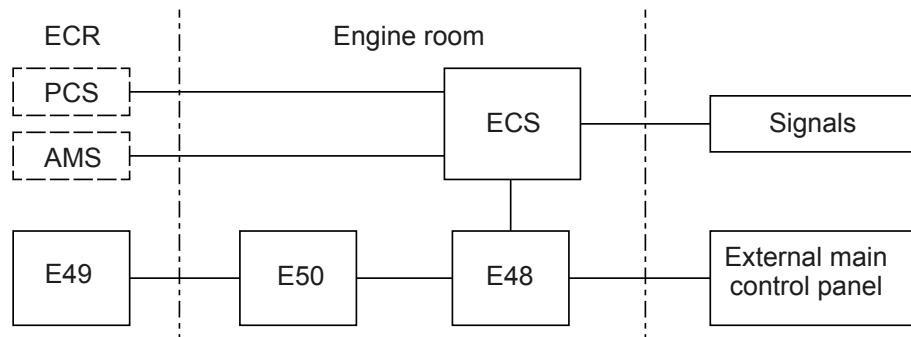
001	Mixing duct	005	Venting/sealing unit
002	Reactor	006	Urea solution supply unit
003	Turbine of turbocharger	007	Soot blowing unit
004	Engine		

4.14.2.5 HP SCR system - at engine stop

If you stop the engine in Tier III mode, the HP SCR system changes to bypass mode after some time. Related to the condition the venting/sealing unit starts for some minutes, refer to [Para 4.14.2.2](#).

4.14.2.6 HP SCR system - cut out

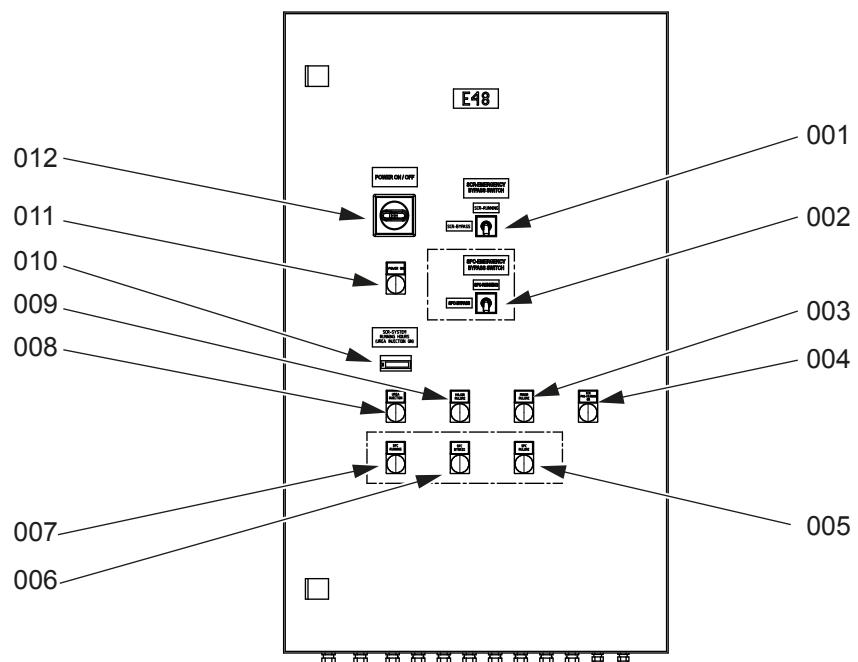
If necessary you can cut out the HP SCR system. When the engine is stopped, you can install covers to the valves V1 and V2 to make a safe stop of the exhaust gas through the HP SCR system, refer to section [10.18 Temporary isolate the HP SCR system](#).


4.14.3 HP SCR control system

The HP SCR control system has the three control boxes that follow:

- Control box E48
- Control box E49
- Control box E50

Each control box is connected through bus connections or hard-wired connections. The control box E48 is connected to the engine control system (ECS) and to the external HP SCR system control through bus connections or hard-wired connections, refer to [Figure 4-17](#).

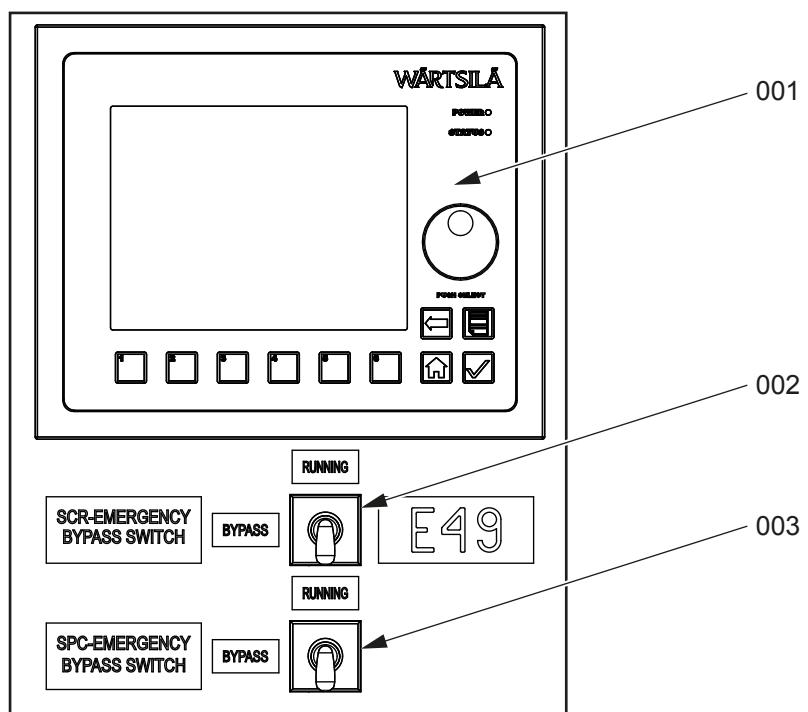

Fig 4-17 HP SCR system - principal control configuration

4.14.3.1 Control box E48

The control box E48 is installed in the engine room and has switches and visual indicators.

Fig 4-18 Control box E48

00561


Legend

001	SCR bypass switch	007	Option SPC - Indication - SPC running
002	Option SPC - SPC bypass switch	008	Indication - urea injection
003	Indication - minor failure	009	Indication - major failure
004	Indication - SCR pre-heating on	010	Hour meter
005	Option SPC - Indication - SPC failure	011	Indication - power on
006	Option SPC - Indication - SPC bypass	012	Power switch

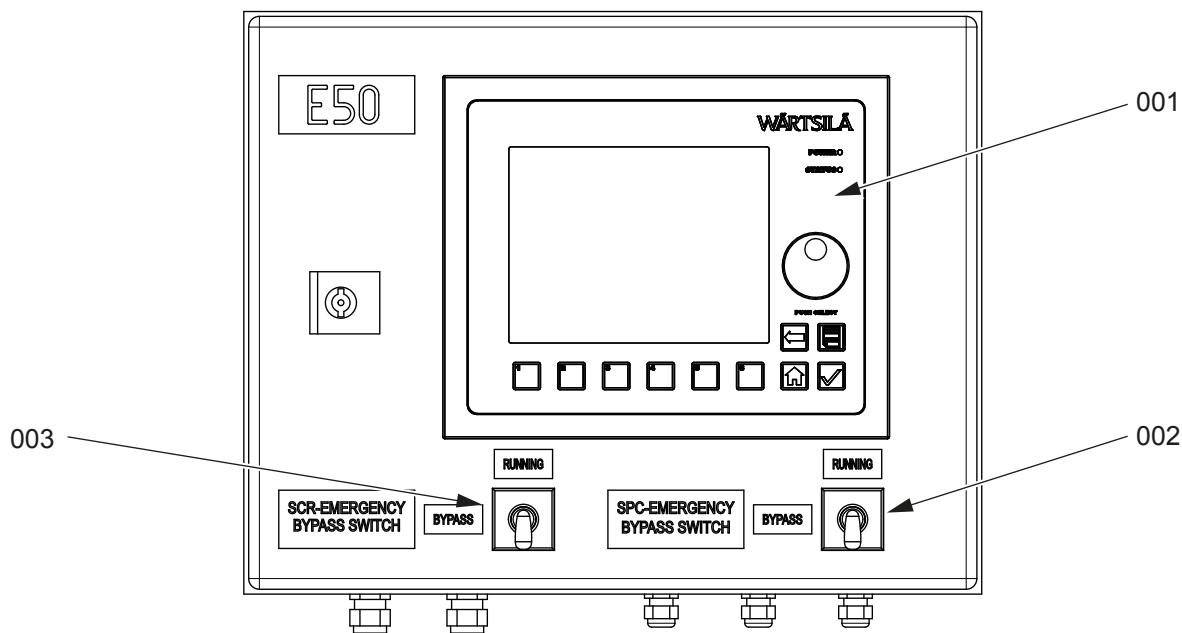
4.14.3.2 Control box E49

The control box E49 is installed in the engine control room and has switches below the LDU-20.

Fig 4-19 Control box E49

00562

Legend


001 LDU-20
002 SCR bypass switch

003 Option SPC - SPC bypass switch

4.14.3.3 Control box E50

The control box E50 is installed on the engine and has switches below the LDU-20.

Fig 4-20 Control box E50

00563

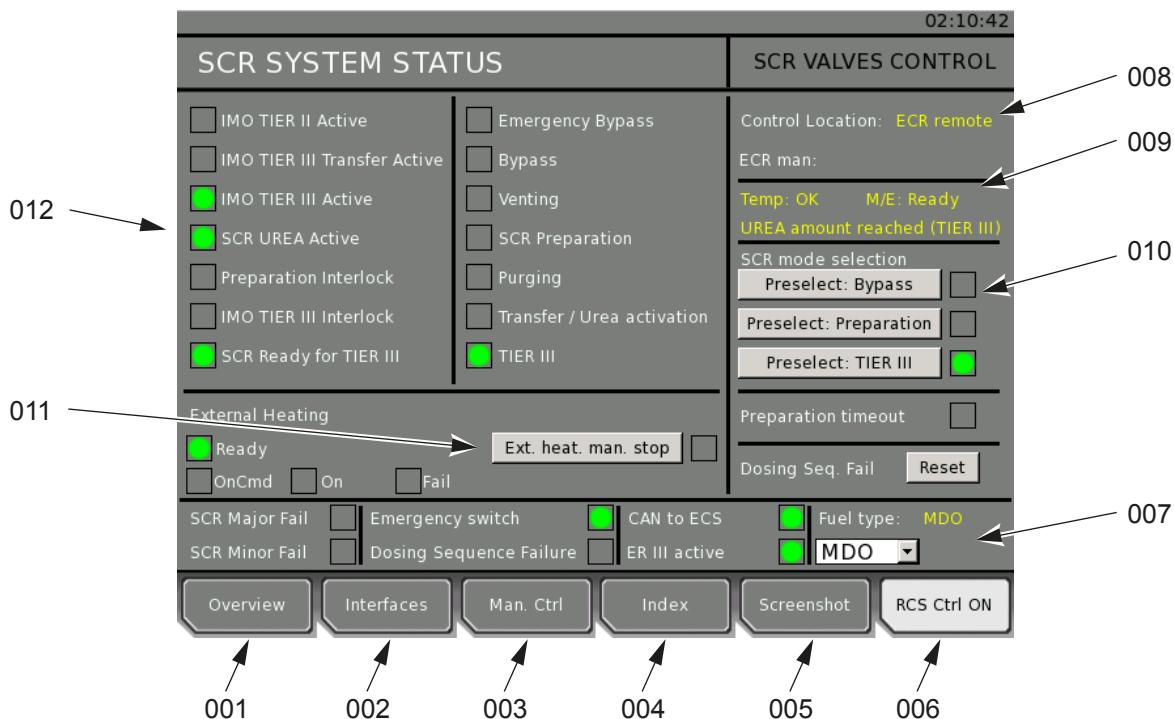
Legend

001 LDU-20

003 SCR bypass switch

002 Option SPC - SPC bypass switch

4.14.3.4 Messages of the HP SCR control system

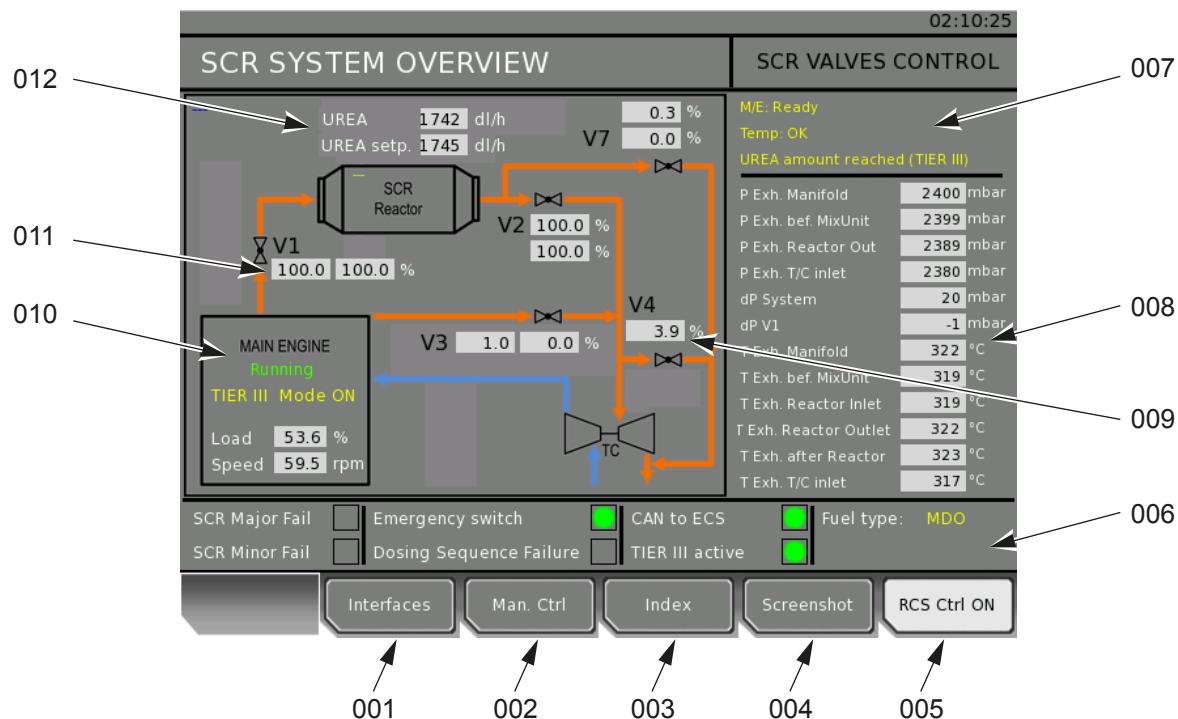

The HP SCR control system gives three messages to the alarm and monitoring system (AMS). The messages are as follows:

- **SCR ON**
This message shows that the HP SCR system is set to ON.
- **SCR minor failure**
This message shows a failure that does not have an effect on HP SCR system operation.
- **SCR major failure**
This message shows a failure that has an effect on HP SCR system operation. The HP SCR control system stops the HP SCR system operation and changes to Tier II mode.

4.14.4 LDU-20 pages

The LDU-20 panel has the pages that follow (examples).

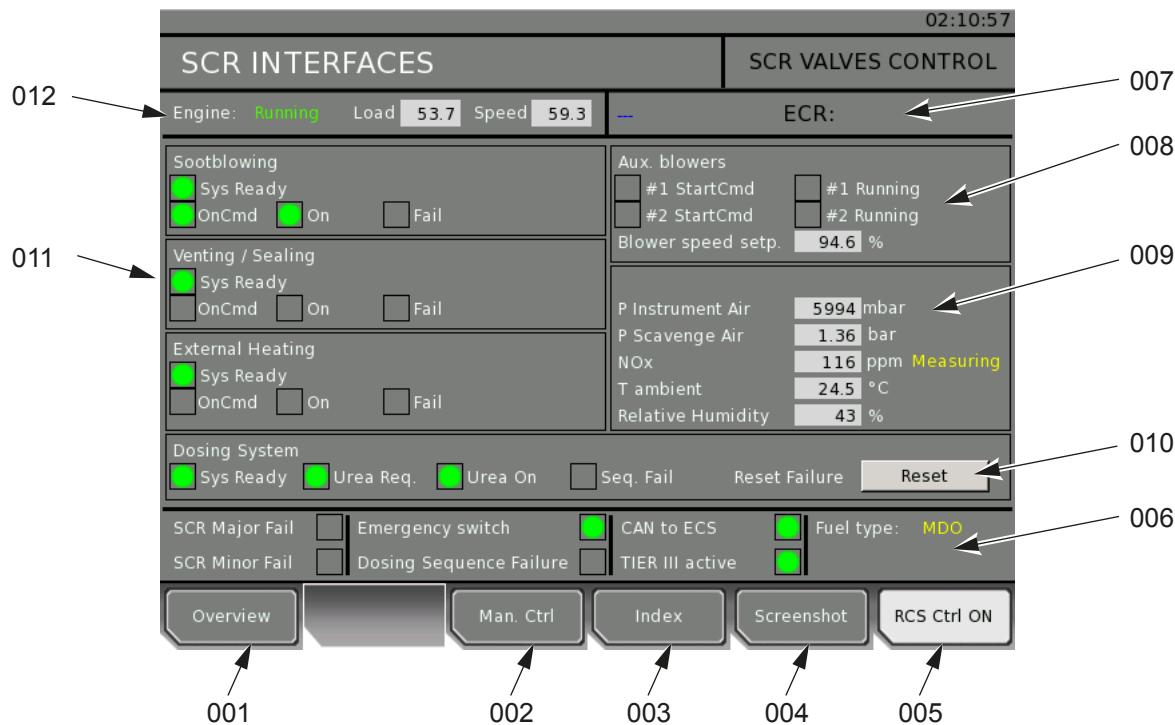
Fig 4-21 LDU-20 page - HP SCR SYSTEM STATUS (MAIN PAGE)



Tab 4-2 HP SCR SYSTEM STATUS (MAIN PAGE)

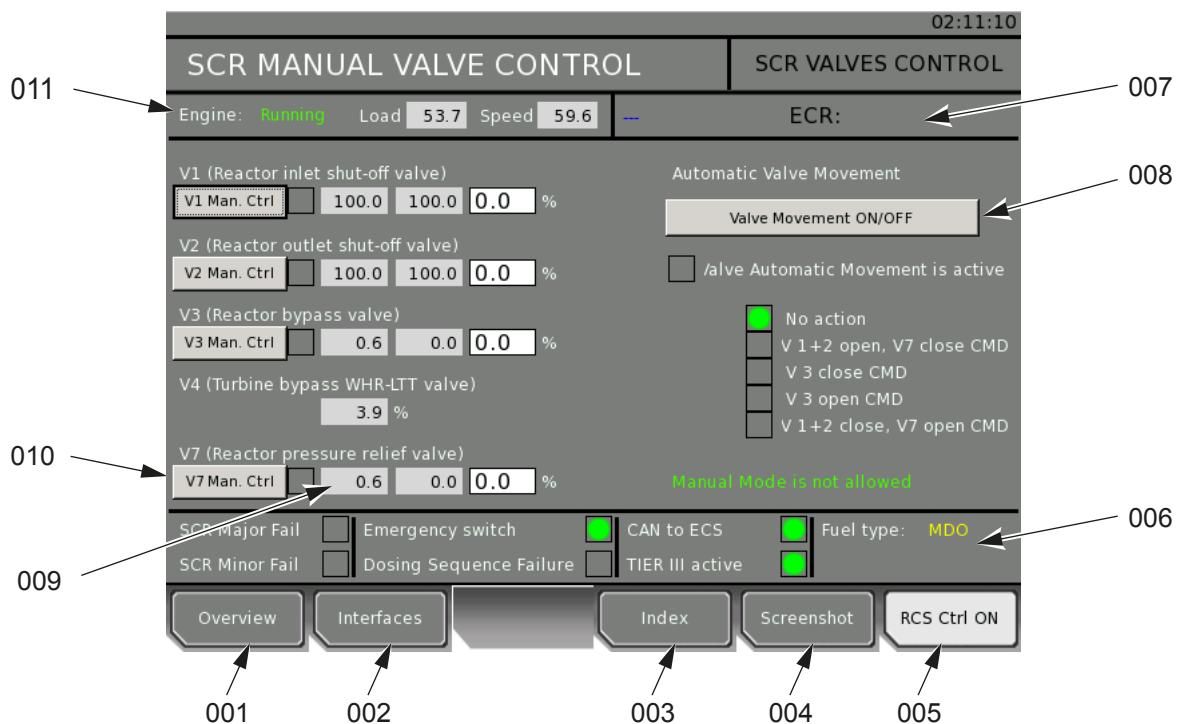
Item	Function	Effect
001	OVERVIEW button	Opens the SCR system overview page
002	INTERFACES button	Opens the interfaces page
003	MAN CTRL button	Opens the manual control page
004	INDEX button	Opens the index page
005	SCREENSHOT button	Makes a screenshot of the current screen
006	RCS CTRL ON button	Gets control from the remote control system (if button is active)
007	FUEL button	Selects the fuel in use
008	Status indication	Shows the control location
009	Status indication	Shows the SCR status
010	Button and indication	Starts and indicates the related SCR operation mode
011	Button and indication	Stops and indicates the external heating system
012	Status indication	Shows the status of the SCR system

NOTE: After boot-up of the LDU-20, the main page will be displayed. If you change to a different page, press the HOME button of the LDU-20 to go back to the main page.


Fig 4-22 LDU-20 page - HP SCR SYSTEM OVERVIEW

Tab 4-3 HP SCR SYSTEM OVERVIEW

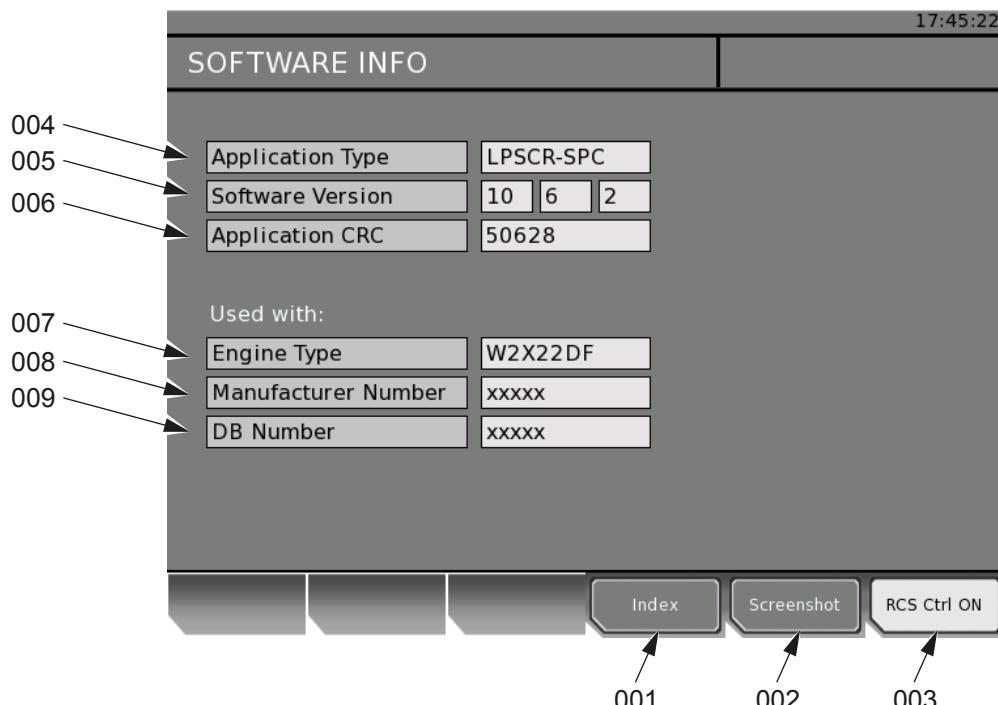
Item	Function	Effect
001	INTERFACES button	Opens the interfaces page
002	MAN CTRL button	Opens the manual control page
003	INDEX button	Opens the index page
004	SCREENSHOT button	Makes a screenshot of the current screen
005	RCS CTRL ON button	Gets control from the remote control system (if button is active)
006	Status indication	Shows the SCR status (failure and mode)
007	Status indication	Shows the SCR status
008	Value indication	Shows the values
009	Status indication	Shows the V4 setpoint if E48 has control (in Tier II mode the ECS controls V4)
010	Status indication	Shows the engine status
011	Status indication	Shows the current value and the valve setpoint value in percent (0% to 100%)
012	Status indication	Shows the current value and the setpoint value of the urea solution injection in dl/h


Fig 4-23 LDU-20 page - HP SCR INTERFACES

Tab 4-4 HP SCR INTERFACES

Item	Function	Effect
001	OVERVIEW button	Opens the SCR system overview page
002	MAN CTRL button	Opens the manual control page
003	INDEX button	Opens the index page
004	SCREENSHOT button	Makes a screenshot of the current screen
005	RCS CTRL ON button	Gets control from the remote control system (if button is active)
006	Status indication	Shows the SCR status (failure and mode)
007	Status indication	Shows the control location
008	Status indication	Shows the auxiliary blower status (in preparation mode and Tier III mode E48 controls the auxiliary blowers)
009	Indication	Shows different sensor signals
010	RESET button	Resets a failure message
011	Status indication	Shows the status of external systems
012	Status indication	Shows the engine status

Fig 4-24 LDU-20 page - HP SCR MANUAL VALVE CONTROL

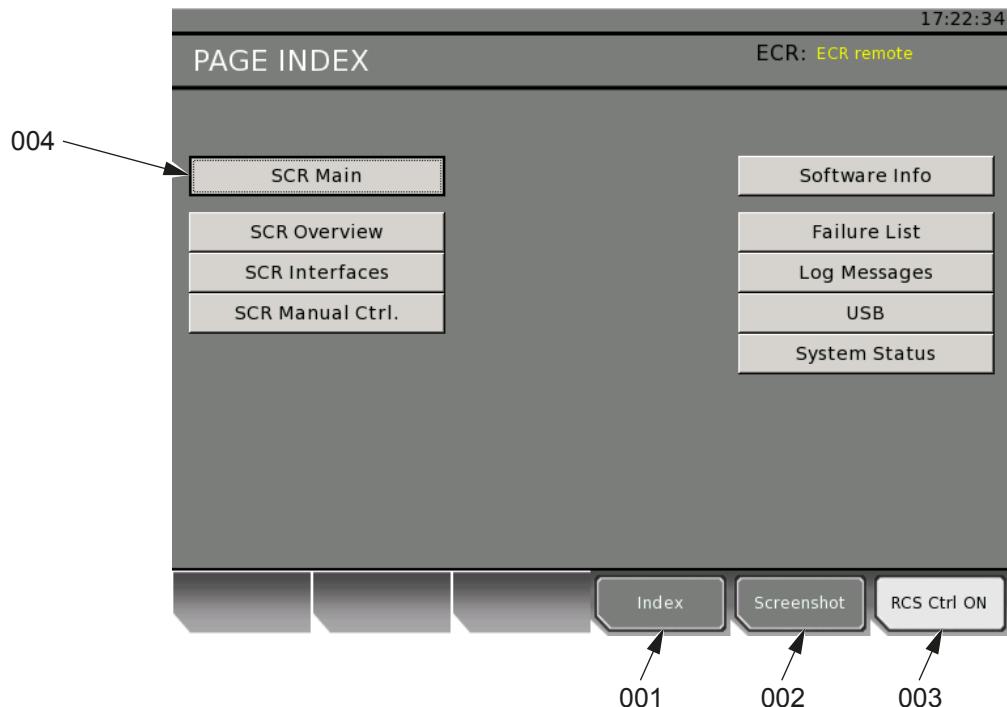


Tab 4-5 HP SCR MANUAL VALVE CONTROL

Item	Function	Effect
001	OVERVIEW button	Opens the SCR system overview page
002	INTERFACES button	Opens the interfaces page
003	INDEX button	Opens the index page
004	SCREENSHOT button	Makes a screenshot of the current screen
005	RCS CTRL ON button	Gets control from the remote control system (if button is active)
006	Status indication	Shows the SCR status (failure and mode)
007	Status indication	Shows the control location
008	Button and indication	<p>Starts and stops the set automatic valve movement as test sequence (serviceable only if the manual mode is permitted) The indication shows the status of the test sequence.</p> <p>NOTE: If necessary you can stop the test sequence manually before it stops automatically.</p>
009	Indication and input field	First value shows the valve value in percent (%). Second value shows the valve setpoint value in percent. Third value shows the valve setpoint value in percent from the operator

Item	Function	Effect
010	Button and indication	Gives manual control of the related valve and shows the status (serviceable only if the manual mode is permitted)
011	Status indication	Shows the engine status

Fig 4-25 LDU-20 page - HP SCR SOFTWARE INFO



Tab 4-6 HP SCR SOFTWARE INFO

Item	Function	Effect
001	INDEX button	Opens the index page
002	SCREENSHOT button	Makes a screenshot of the current screen
003	RCS CTRL ON button	Gets control from the remote control system (if button is active)
004	Application type	Shows the name of the application
005	Software version	Shows the software version number, (major) (middle) (minor), for example 1.2.0
006	Application CRC (Cyclic Redundancy Check)	Shows the check-sum of the application (binary)
007	Engine type	Shows the applicable engine
008	Manufacturer number	Shows the software manufacturer number

Item	Function	Effect
009	DB number	Shows identification number of the installation

Fig 4-26 LDU-20 page - HP SCR PAGE INDEX

Tab 4-7 HP SCR PAGE INDEX

Item	Function	Effect
001	INDEX button	Opens the index page
002	SCREENSHOT button	Makes a screenshot of the current screen
003	RCS CTRL ON button	Gets control from the remote control system (if button is active)
004	Page button	Opens the selected page

Page left intentionally blank

4.15 LP Selective catalytic reduction system

The Low Pressure Selective Catalytic Reduction (LP SCR) system is an optional system to decrease the level of nitrogen oxides in the exhaust gas. This makes sure that the emissions of nitrogen oxides obey the Tier III regulations of the International Maritime Organization (IMO).

Nitrogen oxides are dangerous and are made in secondary reactions in the engine during fuel combustion.

The LP SCR system is installed after the turbocharger. The system design and the supply of components is divided between the LP SCR system supplier, the shipyard and WinGD/engine builder.

The LP SCR system adds a urea water solution to the exhaust gas flow. Chemical reactions change nitrogen oxides to molecular nitrogen and water, which are not dangerous.

Because of the low exhaust gas temperature after the turbocharger ammonia bisulfates are formed in the LP SCR reactor. You must regularly change to bypass operation and do a regeneration procedure to remove these deposits, refer to the related documentation of the manufacturer. During this procedure the LP SCR system cannot operate.

NOTE: For a DF engine: The LP SCR system can only be used in diesel mode.

NOTE: For further details about the operation, maintenance and troubleshooting aspects of the LP SCR system, please refer to the manuals of the manufacturer.

4.15.1 Description of the LP SCR system

4.15.1.1 LP SCR system parts

The LP SCR system has the parts shown in the paragraphs that follow (see [Figure 4-27](#) and [Figure 4-28](#)):

- **Urea pump unit**

This unit supplies the urea solution from the tank to the urea solution dosing unit. This keeps the applicable pressure in the related pipes.

- **Urea dosing unit**

The urea dosing unit controls the supply of urea solution to the decomposition unit.

- **Burner**

The burner heats up the exhaust gas flow that is used to inject the urea.

- **Decomposition unit**

In the decomposition unit the exhaust gas and the urea is mixed to form ammonia.

- **LP SCR reactor**

The LP SCR reactor has a steel wall and has an inlet and an outlet cone. A steel structure holds the catalyst layers. At the catalytic surface of the catalyst layers the nitrogen oxides (NO and NO₂) react with the ammonia into molecular nitrogen (N₂) and water (H₂O). These gases are part of the ambient air and are not dangerous.

Manholes in the reactor walls are used to examine and, if necessary, to clean or replace the catalyst elements.

- **Valves**

The valves in the LP SCR system are used for the different operation modes. The LP SCR system has the valves that follow:

- V1 - reactor inlet valve
- V2 - reactor outlet valve
- V3 - reactor bypass valve
- V4 - turbine bypass valve

The turbine bypass valve (V4) is also used for other functions of the ECS, for example for low-load tuning (LLT) or for steam production control (SPC).

4.15.1.2 Layout

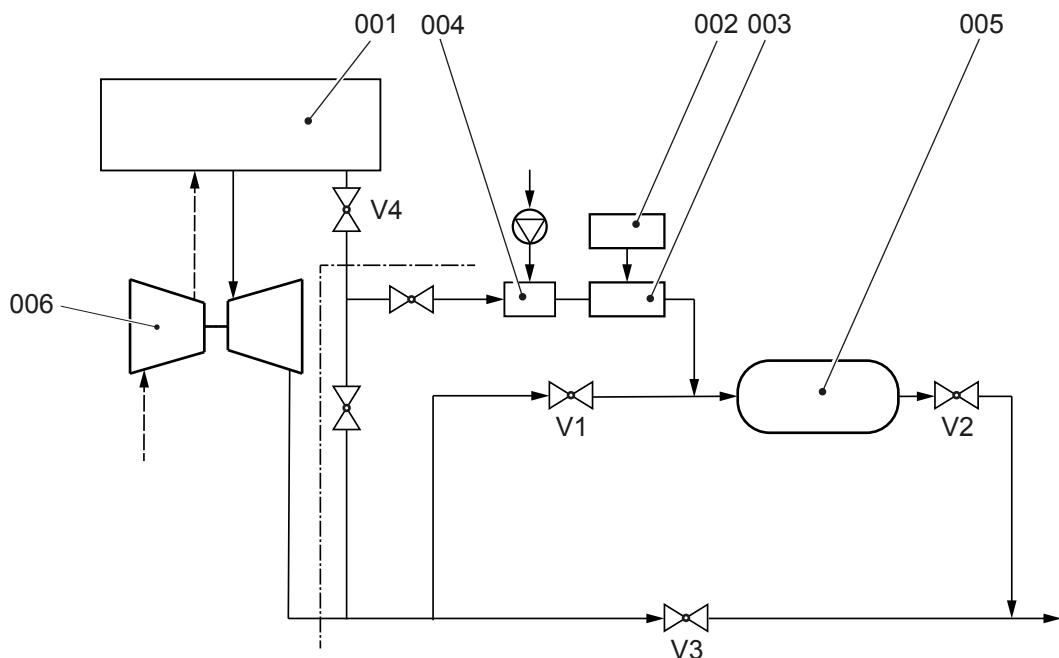

The LP SCR system can be designed in different layouts related to the project. Two examples are shown in [Figure 4-27](#) and [Figure 4-28](#).

Fig 4-27 LP SCR temperature controlled (example)

Legend

001	Engine	004	Burner
002	Urea dosing unit	005	LP SCR reactor
003	Decomposition unit	006	Turbocharger

Fig 4-28 LP SCR bypass rate controlled (example)**Legend**

001	Engine	004	Burner
002	Urea dosing unit	005	LP SCR reactor
003	Decomposition unit	006	Turbocharger

4.15.2 Operation modes

The LP SCR system can be operated if the exhaust gas temperature is in the permitted limits. These limits are adjusted during commissioning. A temperature that is less than the permitted limit can cause the catalyst elements to clog. A temperature that is more than the permitted limit can cause the catalyst elements to become worn quickly.

4.15.2.1 LP SCR system - (emergency) bypass

In this operation mode, the LP SCR system is bypassed. The engine operates in Tier II mode. Urea solution is not injected.

The valves have the conditions that follow:

- V1 - closed
- V2 - closed
- V3 - open
- V4 - the control systems control this valve.

4.15.2.2 LP SCR system - preparation

In this operation mode, exhaust gas causes the temperature of the LP SCR reactor to slowly increase. Urea solution is not injected.

The valves have the conditions that follow:

- V1 - slowly changes from closed to open
- V2 - slowly changes from closed to open
- V3 - slowly changes from open to closed
- V4 - the control systems control this valve.

When the temperature of the LP SCR reactor has the value for operation in Tier III mode, a timer starts. As long as the timer runs, the operator must change to Tier III mode. If the operator does not change to Tier III and the timer stops, the ECS changes back to bypass mode (Tier II).

4.15.2.3 LP SCR system - Tier III

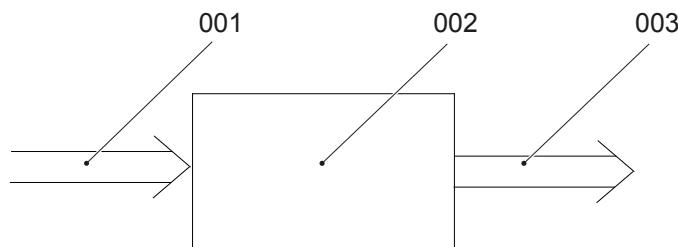
In this operation mode, the LP SCR system is set to ON. The engine operates in Tier III mode. Urea solution is injected.

The valves have the conditions that follow:

- V1 - open
- V2 - open
- V3 - closed
- V4 - the control systems control this valve to keep the temperature of the exhaust gas in the correct range.

4.15.2.4 LP SCR system - at engine stop

If you stop the engine in Tier III mode, the LP SCR system changes to bypass mode immediately and urea solution injection stops.


4.15.3 LP SCR control system

The main tasks of the WinGD control system for the LP SCR system are as follows:

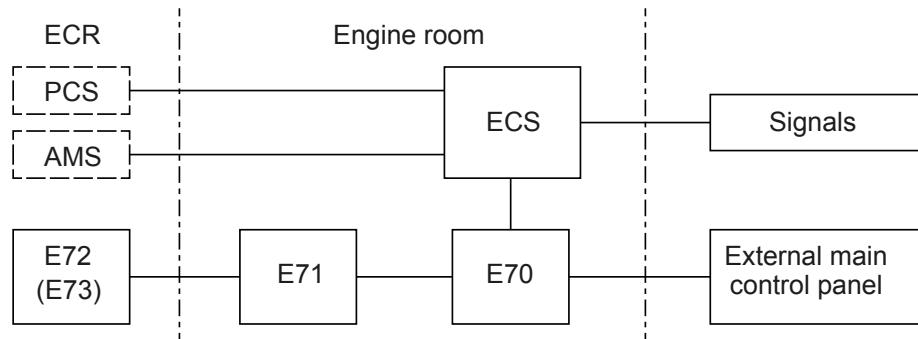
- Calculate the setpoint position for the turbine bypass valve (V4) to control the exhaust gas temperature.
- Control the operation of the auxiliary blowers.
- Calculate the setpoint for the urea dosing unit.

Related to the input signals the LP SCR control system gives the related signals to the LP SCR system, refer to [Figure 4-29](#).

Fig 4-29 LP SCR control system layout

Legend

001	Input signals	003	Output signals
002	LP SCR control system		


The main input signals are as follows:

- Engine parameters
- Prepare Tier III command from RCS
- Tier III command from RCS
- Position of turbine bypass valve (V4)
- Different temperatures and pressures

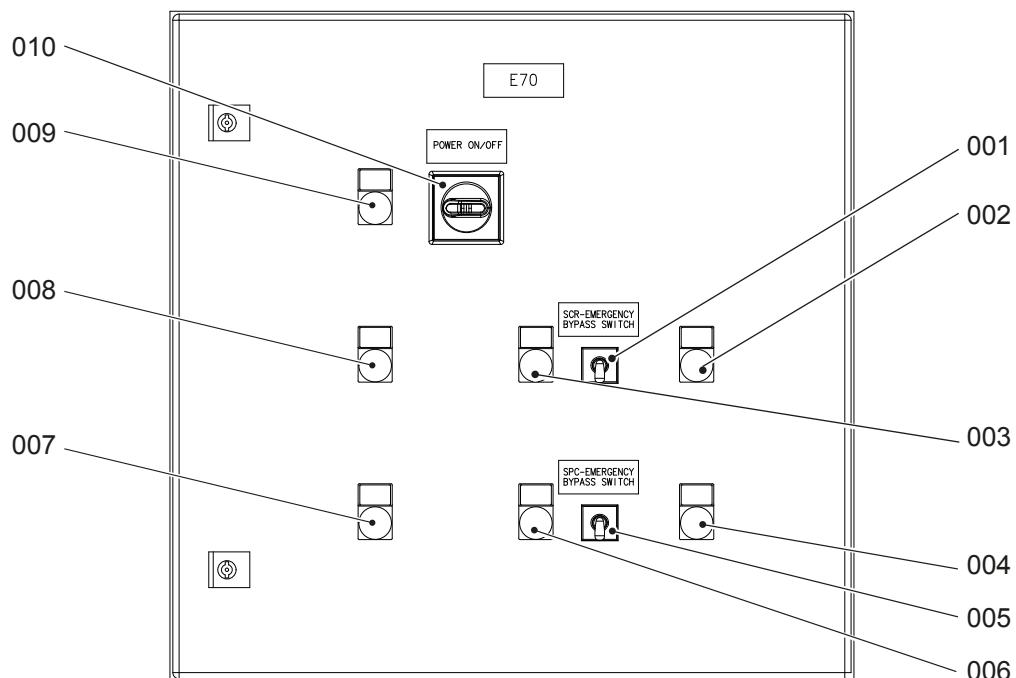
The main output signals are as follows:

- Different temperatures and pressures
- Signals to enable or disable the LP SCR system

The principal control configuration of the LP SCR system is shown in [Figure 4-30](#).

Fig 4-30 LP SCR system - principal control configuration

4.15.3.1 Messages of the LP SCR control system

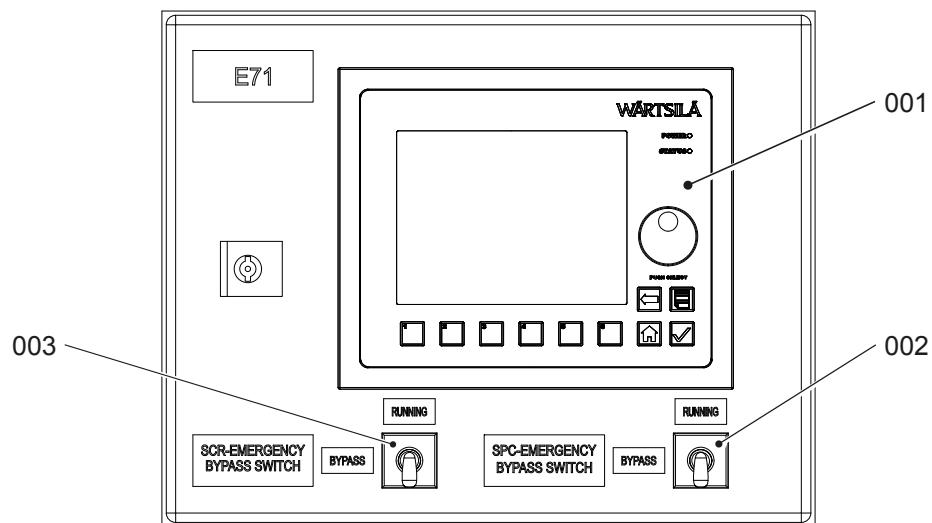

The LP SCR control system gives three messages to the alarm and monitoring system (AMS). The messages are as follows:

- LP SCR ON - This message shows that the LP SCR system is set to ON and thus urea is injected.
- LP SCR minor failure - This message shows a failure that does not have an effect on LP SCR system operation.
- LP SCR major failure - This message shows a failure that has an effect on LP SCR system operation. The LP SCR control system stops the LP SCR system operation and changes to Tier II mode.

4.15.3.2 Control box E70

The control box E70 is installed on the engine and has switches and visual indicators.

Fig 4-31 Control box E70 with option SPC


Legend

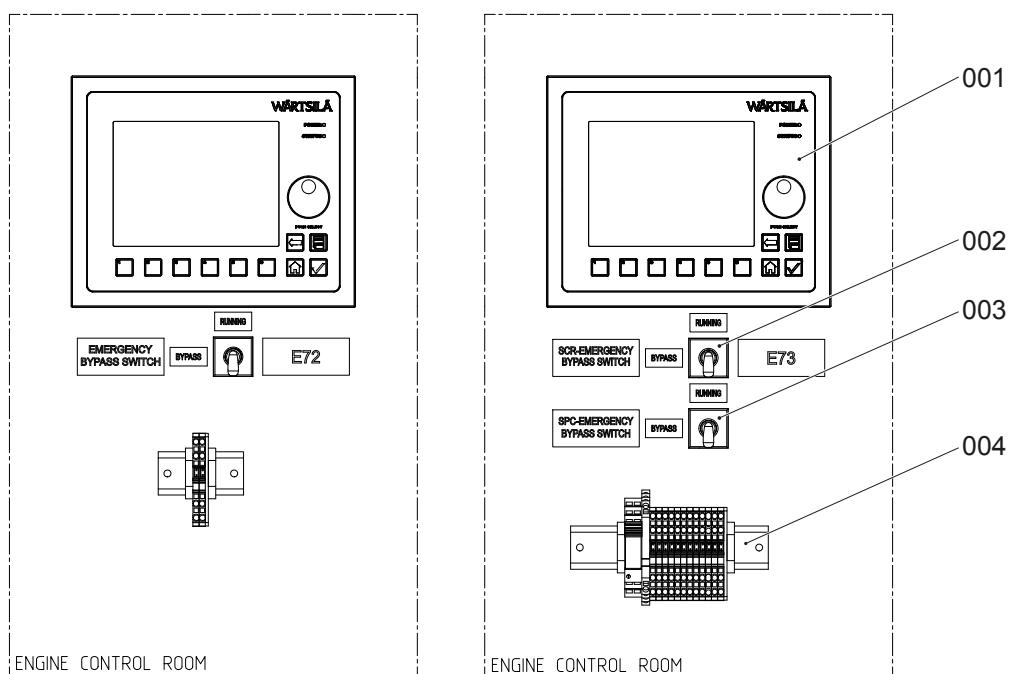
001	SCR bypass switch	006	Indication (orange) - SPC bypass
002	Indication (red) - SCR failure	007	Indication (green) - SPC running
003	Indication (orange) - SCR bypass	008	Indication (green) - SCR running
004	Indication (red) - SPC failure	009	Indication (green) - Power on
005	SPC bypass switch	010	Power switch

4.15.3.3 Control box E71

The control box E71 is installed on the engine or in the engine room and has switches below the LDU-20.

Fig 4-32 Control box E71 with option SPC

Legend


001 LDU-20
002 SPC bypass switch

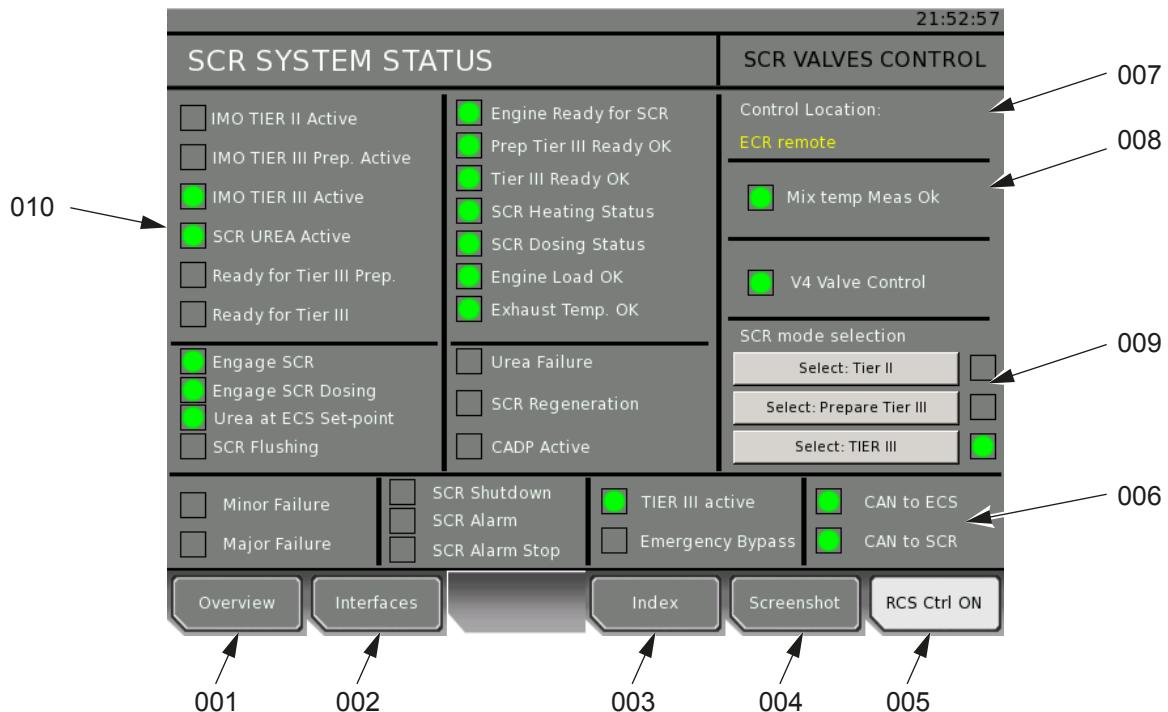
003 SCR bypass switch

4.15.3.4 Control box E72 or E73

The control box E72 (without SPC) or E73 (with SPC) is installed in the engine control room and has switches below the LDU-20.

Fig 4-33 Control boxes E72 and E73

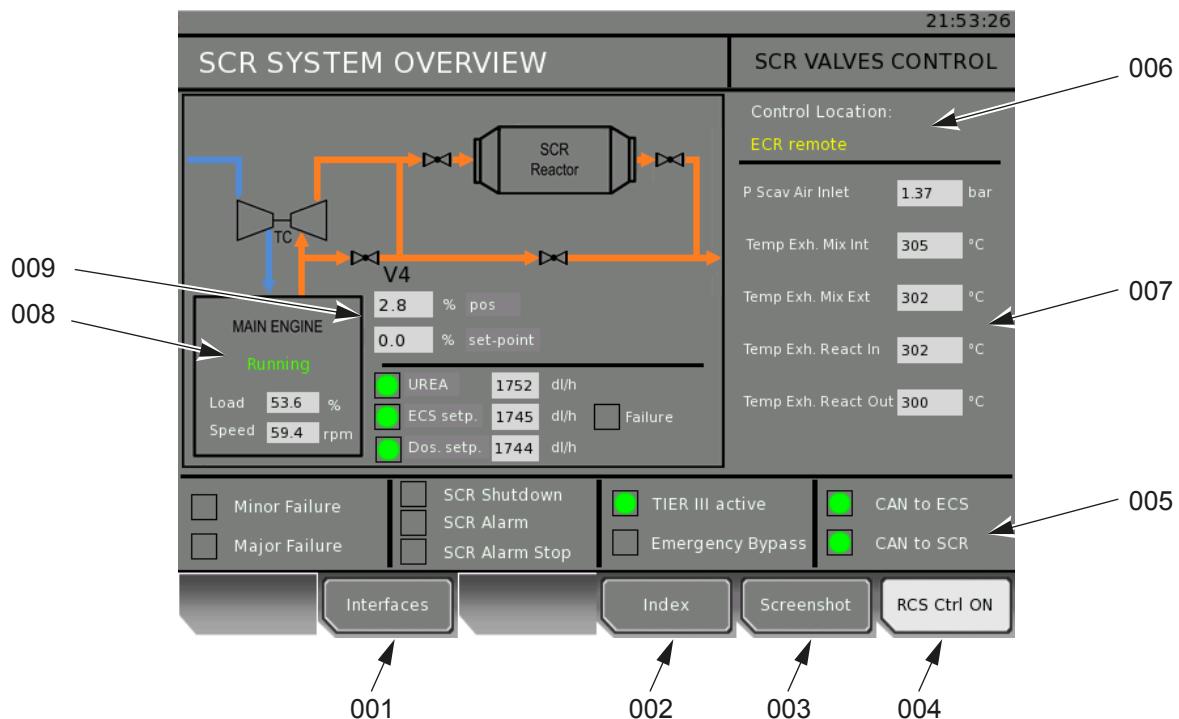
Legend


001 LDU-20
002 SCR bypass switch

003 SPC bypass switch
004 Conductor terminal block

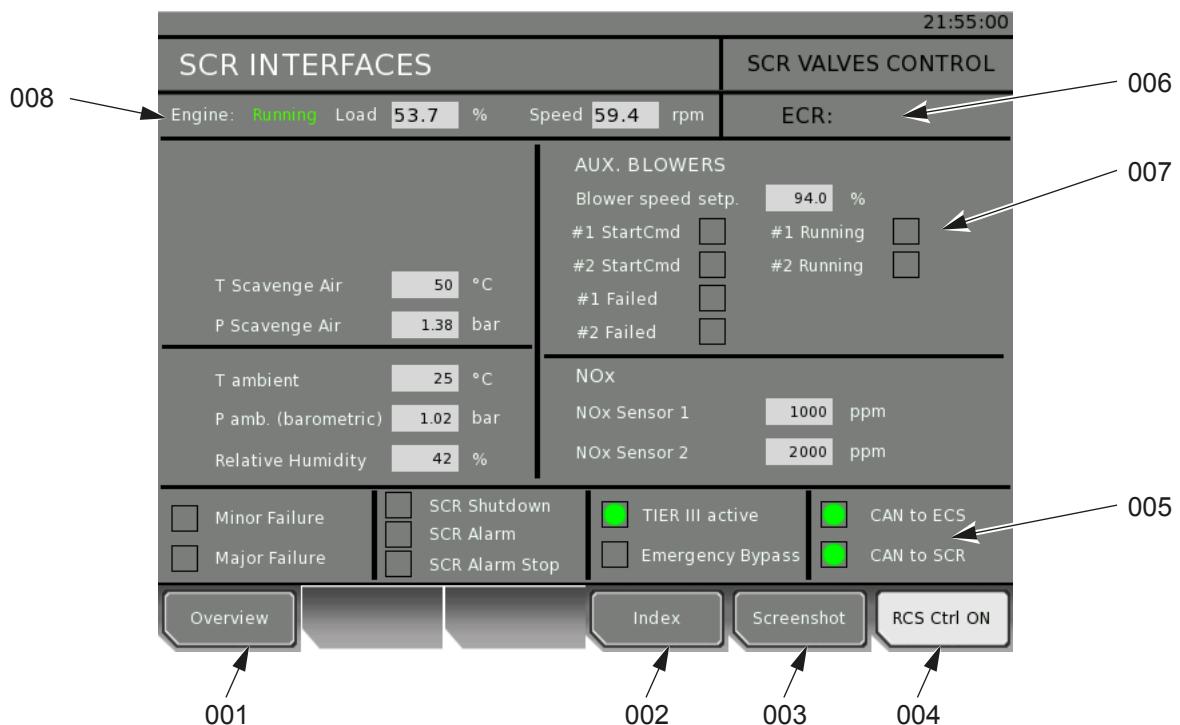
4.15.4 LDU-20 pages

The LDU-20 panel has the pages that follow (examples).


Fig 4-34 LDU-20 page - LP SCR SYSTEM STATUS (MAIN PAGE)

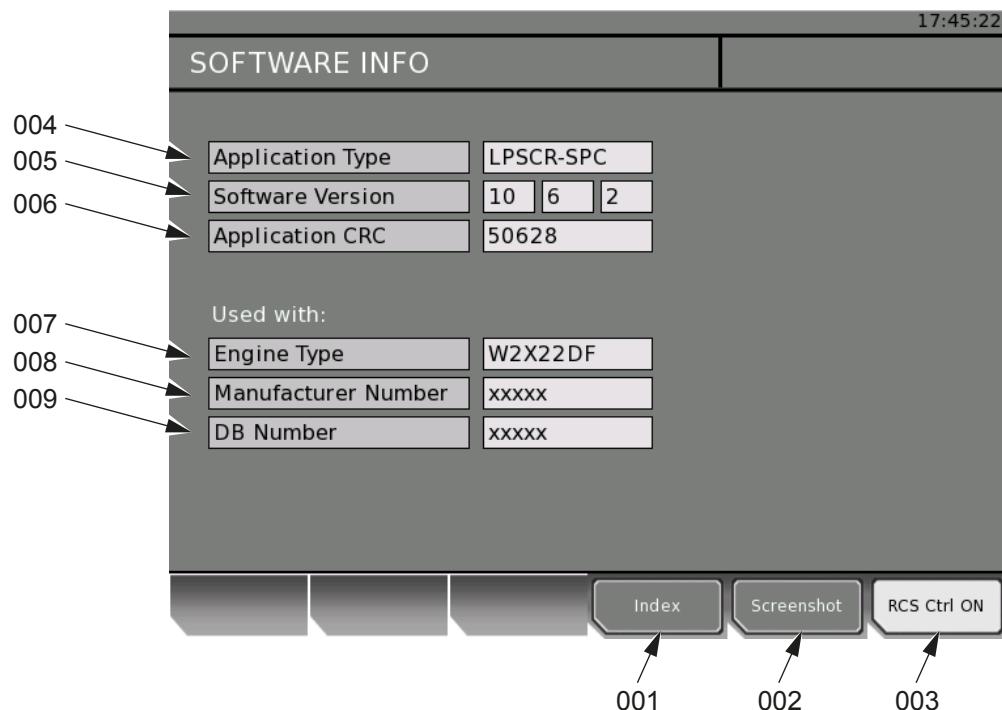
Tab 4-8 LP SCR SYSTEM STATUS (MAIN PAGE)

Item	Function	Effect
001	OVERVIEW button	Opens the SCR system overview page
002	INTERFACES button	Opens the interfaces page
003	INDEX button	Opens the index page
004	SCREENSHOT button	Makes a screenshot of the current screen
005	RCS CTRL OFF button	Gets control from the remote control system (if button is active)
006	Status indication	Shows the SCR status
007	Status indication	Shows the control location
008	Status indication	Shows the related status
009	Button and indication	Starts and indicates the related SCR operation mode
010	Status indication	Shows the status of the SCR system


Fig 4-35 LDU-20 page - LP SCR SYSTEM OVERVIEW

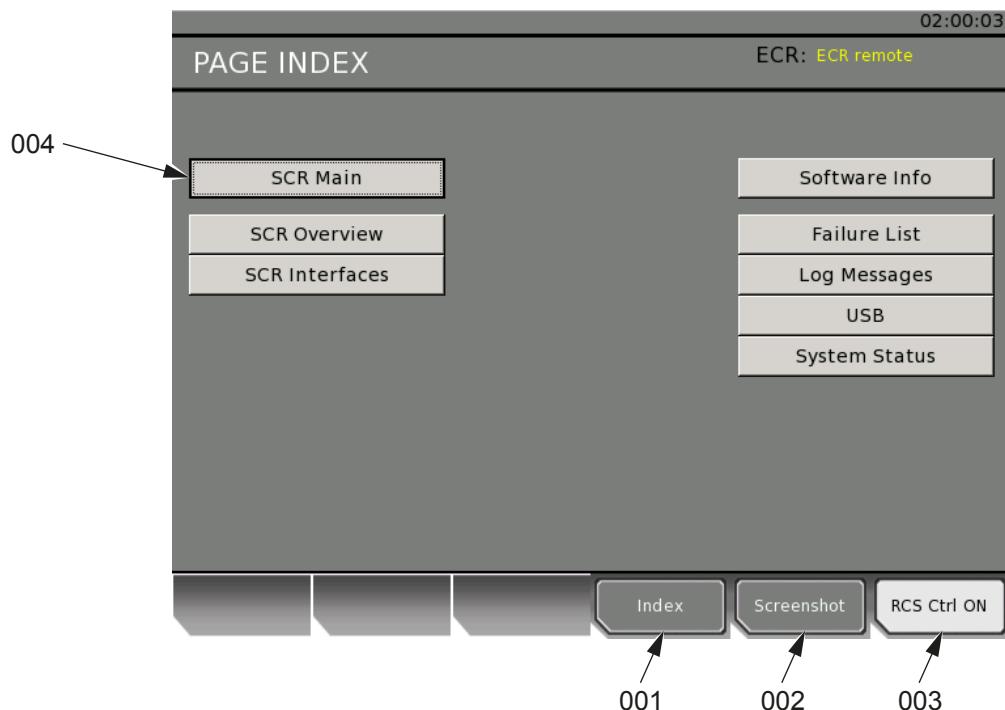
Tab 4-9 LP SCR SYSTEM OVERVIEW

Item	Function	Effect
001	INTERFACES button	Opens the interfaces page
002	INDEX button	Opens the index page
003	SCREENSHOT button	Makes a screenshot of the current screen
004	RCS CTRL OFF button	Gets control from the remote control system (if button is active)
005	Status indication	Shows the SCR status
006	Status indication	Shows the control location
007	Status indication	Shows the values
008	Status indication	Shows the engine status
009	Status indication	Shows the current value and the valve setpoint value in percent (0% to 100%)


Fig 4-36 LDU-20 page - LP SCR INTERFACES

Tab 4-10 LP SCR INTERFACES

Item	Function	Effect
001	OVERVIEW button	Opens the SCR system overview page
002	INDEX button	Opens the index page
003	SCREENSHOT button	Makes a screenshot of the current screen
004	RCS CTRL OFF button	Gets control from the remote control system (if button is active)
005	Status indication	Shows the SCR status
006	Status indication	Shows the control location
007	Status indication	Shows the auxiliary blower status
008	Status indication	Shows the status of the SCR system


Fig 4-37 LDU-20 page - LP SCR SOFTWARE INFO

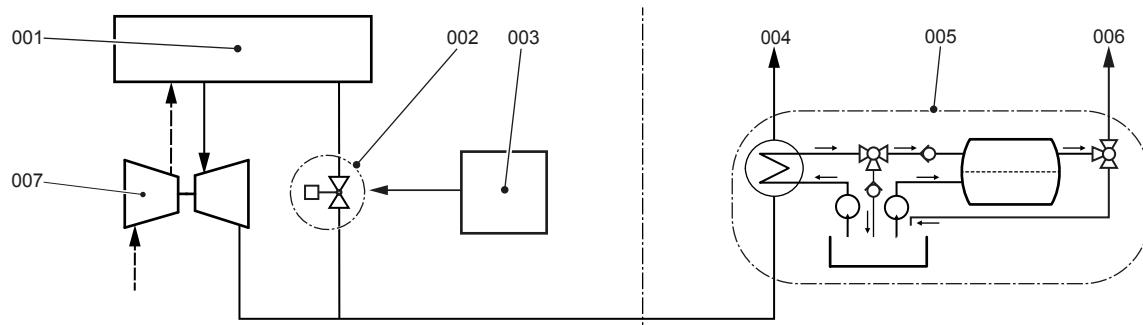
Tab 4-11 LP SCR SOFTWARE INFO

Item	Function	Effect
001	INDEX button	Opens the index page
002	SCREENSHOT button	Makes a screenshot of the current screen
003	RCS CTRL ON button	Gets control from the remote control system (if button is active)
004	Application type	Shows the name of the application
005	Software version	Shows the software version number, (major) (middle) (minor), for example 1.2.0
006	Application CRC (Cyclic Redundancy Check)	Shows the check-sum of the application (binary)
007	Engine type	Shows the applicable engine
008	Manufacturer number	Shows the software manufacturer number
009	DB number	Shows identification number of the installation

Fig 4-38 LDU-20 page - LP SCR PAGE INDEX

Tab 4-12 LP SCR PAGE INDEX

Item	Function	Effect
001	INDEX button	Opens the index page
002	SCREENSHOT button	Makes a screenshot of the current screen
003	RCS CTRL ON button	Gets control from the remote control system (if button is active)
004	Page button	Opens the selected page


4.16 Steam production control system

The steam production control system (SPC) supplies the steam production of the ship with exhaust gas, which has a higher temperature.

SPC is an optional system.

NOTE: The engine obeys the IMO NOx limits, with and without steam production.

Fig 4-39 Example of SPC

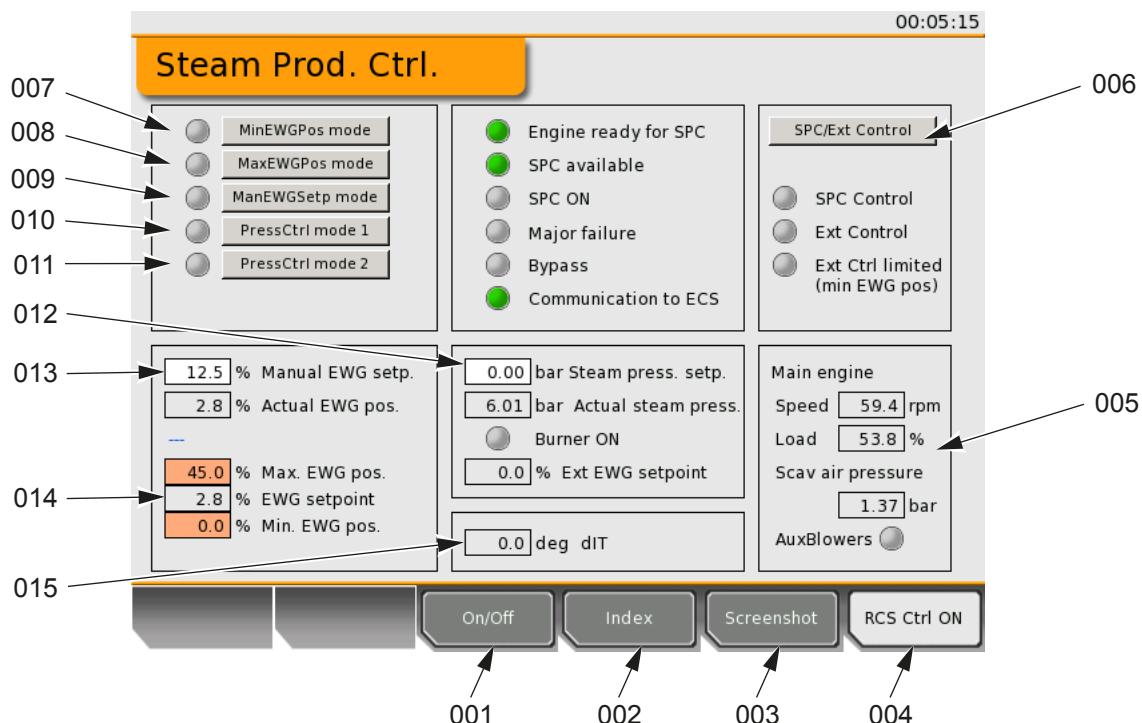
Legend

001	Engine	005	Steam production
002	Exhaust waste gate valve	006	Steam consumer
003	Steam production control system	007	Turbocharger
004	Stack		

4.16.1 Function

The SPC controls the exhaust waste gate valve (002, [Figure 4-39](#)). If the exhaust waste gate valve (EWG) opens, a part of the exhaust gas bypasses the turbocharger (007). As a result the temperature of the exhaust gas increases, which is supplied to the steam production (005).

The supply of the turbocharger comes first, before the supply of the steam production.


The supply of the steam production is only permitted in the range between the minimum engine load and the maximum bypass rate. These limits are related on the ambient conditions and are project specific.

4.16.2 User interface on the LDU-20

If an SCR system is installed, the control for SPC is part of the SCR system.

If no SCR system is installed, the control for SPC has separate control boxes.

Fig 4-40 LDU-20 page - STEAM PRODUCTION CONTROL

Tab 4-13 STEAM PRODUCTION CONTROL (SPC)

Item	Function	Effect
001	ON/OFF button	Starts or stops the SPC system
002	INDEX button	Opens the index page
003	SCREENSHOT button	Makes a screen shot of the current screen
004	RCS CTRL ON button	Gets control from the remote control system (if button is active)
005	Value indication	Shows the values
006	SPC/EXT. CONTROL button	Changes to the external control of the SPC
007	MinEWGPos mode button	Sets the minimum permitted EWG position Other SPC modes than the initial mode MinEWGPos are only possible, if the signal Engine ready for SPC from ECS is active (green).
008	MaxEWGPos mode button	Sets the maximum permitted EWG position
009	ManEWGSetp mode button	Sets the EWG setpoint, if the specific LDU-20 is in control You can set a value of 0 to 100%, but the SPC uses only a value in the permitted range.

Item	Function	Effect
010	PressCtrl mode 1 button	<p>Starts the PressCtrl mode 1</p> <p>This mode is applicable only, if the steam pressure signal from the steam plant is correct.</p> <p>SPC compares the setpoint and the actual steam pressure. If there is a difference, it opens or closes the EWG to change the steam pressure.</p> <p>If the status of the steam pressure signal changes to FAIL, SPC will change to MinEWGPos mode.</p>
011	PressCtrl mode 2 button	<p>Starts the PressCtrl mode 2</p> <p>Same effect as PressCtrl mode 1: But, if the burner is ON, the SPC uses the minimum permitted EWG position only.</p>
012	Steam Pressure Setpoint	<p>Shows the actual setpoint of the steam pressure</p> <p>You can manually set the setpoint, if the PressCtrl mode 1 or 2 is active.</p> <p>It is only possible to set the setpoint if the specific LDU-20 is in control.</p>
013	Manual EWG Setpoint	<p>Shows the actual EWG setpoint</p> <p>If the ManEWGSetp mode is active, you can enter the EWG setpoint.</p>
014	EWG Limitation	<p>Shows the current EWG setpoint together with the actual minimum and maximum limitations</p> <p>Too wide EWG opening decreases the scavenge air pressure. This will start the auxiliary blowers.</p> <p>The limit of the EWG opening prevents the scavenge air pressure to decrease below the switching-On point of the auxiliary blowers.</p>
015	dIT	<p>Shows the delta injection timing (dIT)</p> <p>SPC calculates the dIT. The dIT controls the timing of the fuel injection. This timing is related to the difference between EWG setpoint and the minimum permitted EWG position.</p> <p>The ECS controls, if the dIT from SPC will be used or not.</p> <p>Rule: If ICC is on, then dIT is not used.</p>

4.16.3 Steam boost mode (SBM)

Steam boost mode is an optional application that can be activated or deactivated manually. It is only available in gas mode operation. Activating the steam boost mode allows for a higher steam production on board. The steam boost mode is available for two different power ranges:

- 51% to 91% of the contracted maximum continuous rating
- 76% to 91% of the engine power

The steam boost mode offset can be chosen freely on the LDU from 0% to 100%. Use the LDU-Screen to control the steam boost mode functions.

4.16.4 LDU screen for steam boost mode

Fig 4-41 LDU for the steam boost mode

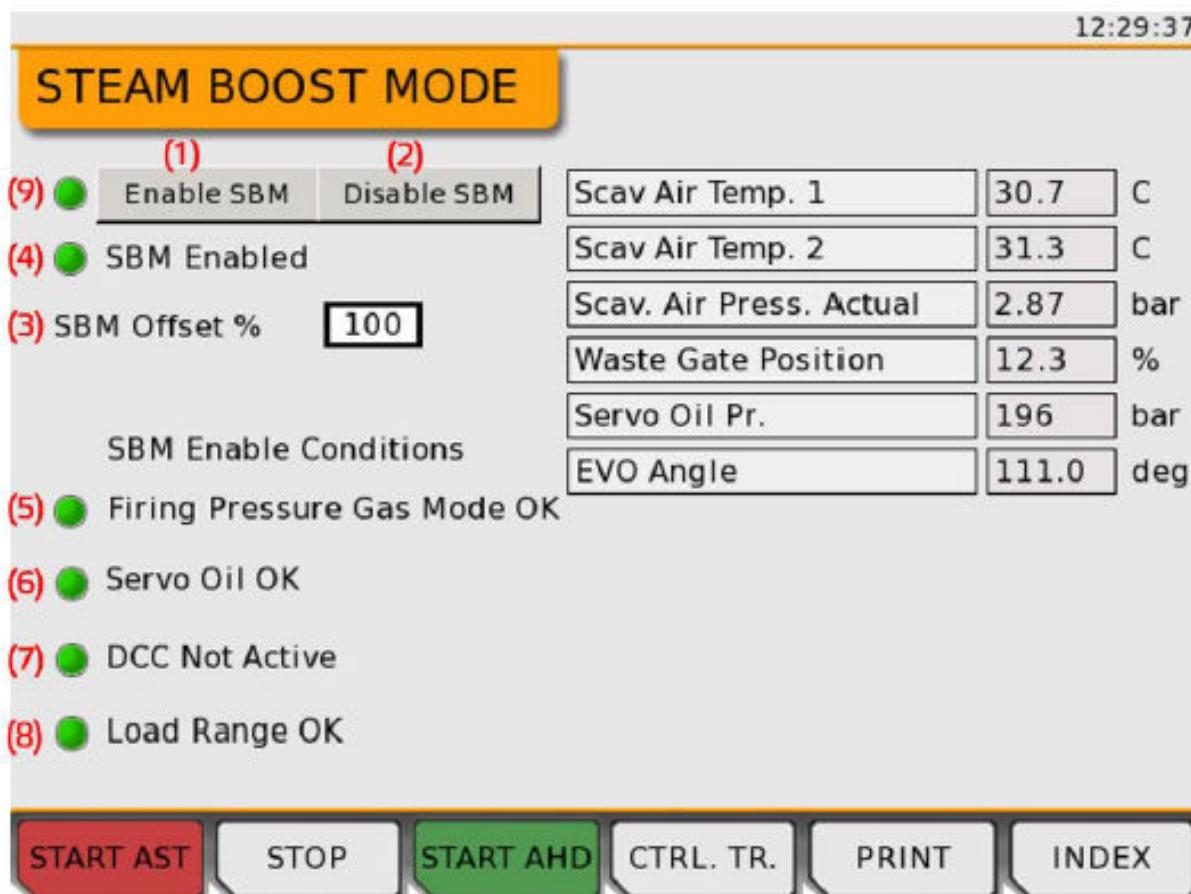


Figure 1: LDU Steam Boost Mode page in UNIC

Inputs:

- (1) Manually enable SBM
- (2) Manually disable SBM
- (3) Set the SBM offset, value between 0 and 100 %.

Outputs:

- (4) Indication whether the SBM is currently enabled
- (5) Firing pressure in range to enable SBM
- (6) Servo Oil pressure in range to enable SBM
- (7) DCC not active
- (8) Power in range to enable SBM
- (9) Indication that SBM is enabled/disabled on the LDU

4.16.5 Activate the steam boost mode

Before activating the steam boost mode, make sure the LDU-Screen ([Figure 4-41](#)) shows the following:

- Firing Pressure Gas Mode indicates (5) "OK".
- Servo Oil (6) indicates "OK".
- DCC (7) indicates "Not Active".
- Load Range (8) indicates "OK".

1 Press the button "Enable SBM" (1) to activate the steam boost mode.

NOTE: The indication "SBM Enabled" (4) becomes green.

4.16.6 Deactivate the steam boost mode

Before deactivating the steam boost mode, make sure the LDU-Screen ([Figure 4-41](#)) shows the following:

1 Press the button "Disable SBM" (2) to deactivate the steam boost mode.

4.16.7 Adjust the steam boost mode offset

Before adjusting the steam boost mode offset, make sure the following conditions are met:

- The engine is running with correct power ranges for the steam boost mode.
- The load range (8) indicates "OK".
- The steam boost mode is activated.

1 a.) On the right side of LDU-Screen, turn the control key to the left to decrease the SBM-Offset-%.

or

1 b.) On the right side of LDU-Screen, turn the control key to the right to increase the SBM-Offset-%.

2 Press the control key to acknowledge the selected value of the Exhaust-Valve-Operation-Offset.

NOTE: Adjusting the SBM-Offset advances the exhaust valve opening timing. This leads to an increase of the exhaust gas temperatures of the cylinder. Depending on the engine load, the exhaust gas waste gate will also be opening and closing for steam boost production. This is a desired effect to further increase the exhaust gas temperature before entering the economizer.

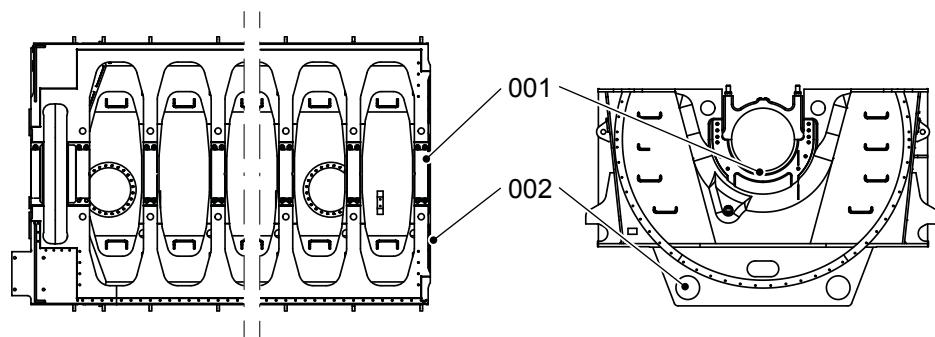
5 Design and function of components

5.1	Group 1 - Engine frame and bearings	
5.1.1	Bedplate.....	144
5.1.2	Main bearing.....	146
5.1.3	Thrust bearing.....	148
5.1.4	Monoblock column.....	150
5.1.5	Tie rod.....	152
5.2	Group 2 - Cylinder	
5.2.1	Cylinder liner.....	154
5.2.2	Lubricating quill.....	156
5.2.3	Gas admission valve.....	158
5.2.4	Piston rod gland.....	160
5.2.5	Direct controlled injection valve.....	162
5.2.6	Starting valve.....	164
5.2.7	Relief valve.....	166
5.2.8	Exhaust valve.....	168
5.2.9	Pilot injection valve.....	170
5.3	Group 3 - Crankshaft, connecting rod and piston	
5.3.1	Crankshaft.....	172
5.3.2	Torsional vibration damper.....	174
5.3.3	Axial vibration damper.....	178
5.3.4	Turning gear.....	180
5.3.5	Connecting rod and connecting rod bearing.....	182
5.3.6	Crosshead and guide shoe.....	184
5.3.7	Piston.....	186
5.4	Group 4 - Supply unit drive and control components	
5.4.1	Supply unit drive.....	188
5.4.2	Starting air shut-off valve.....	190
5.4.3	Control air supply.....	192
5.4.4	Local maneuvering stand for UNIC.....	194
5.4.5	Pick-up for speed measurement.....	196
5.5	Group 5 - Supply unit, pumps and control valves	
5.5.1	Servo oil pump.....	198
5.5.2	Supply unit.....	200
5.5.3	Supply unit pilot fuel.....	202
5.5.4	Fuel pump.....	204
5.5.5	Pressure control valve.....	206
5.5.6	Flow limiting valve.....	208
5.5.7	Exhaust valve control unit.....	210
5.6	Group 6 - Scavenge air components	
5.6.1	Scavenge air receiver.....	212

5.6.2	Turbocharger.....	214
5.6.3	Auxiliary blower.....	216
5.6.4	Auxiliary blower switch box.....	218
5.6.5	Scavenge air cooler.....	220
5.6.6	Water separator.....	222
5.7	Group 7 - Cylinder lubrication and balancer	
5.7.1	Cylinder lubrication.....	224
5.7.2	Integrated electrical balancer (iELBA).....	226
5.8	Group 8 - Pipes	
5.8.1	Exhaust waste gate.....	232
5.9	Group 9 - Monitoring instruments	
5.9.1	Crank angle sensor unit.....	234
5.9.2	Water in oil monitor.....	236
5.9.3	Oil mist detector.....	238

Page left intentionally blank

5.1 Group 1 - Engine frame and bearings


5.1.1 Bedplate

The bedplate is the basic structure of the engine. The bearing girders (001, [Figure 5-1](#)) are attached in the bedplate and hold the crankshaft.

The bottom part of the bedplate is the crankcase and collects lubricating oil. This oil flows back to the oil supply system through oil drains (002).

The length of the bedplate is related to the number of cylinders.

Fig 5-1 Bedplate (generic)

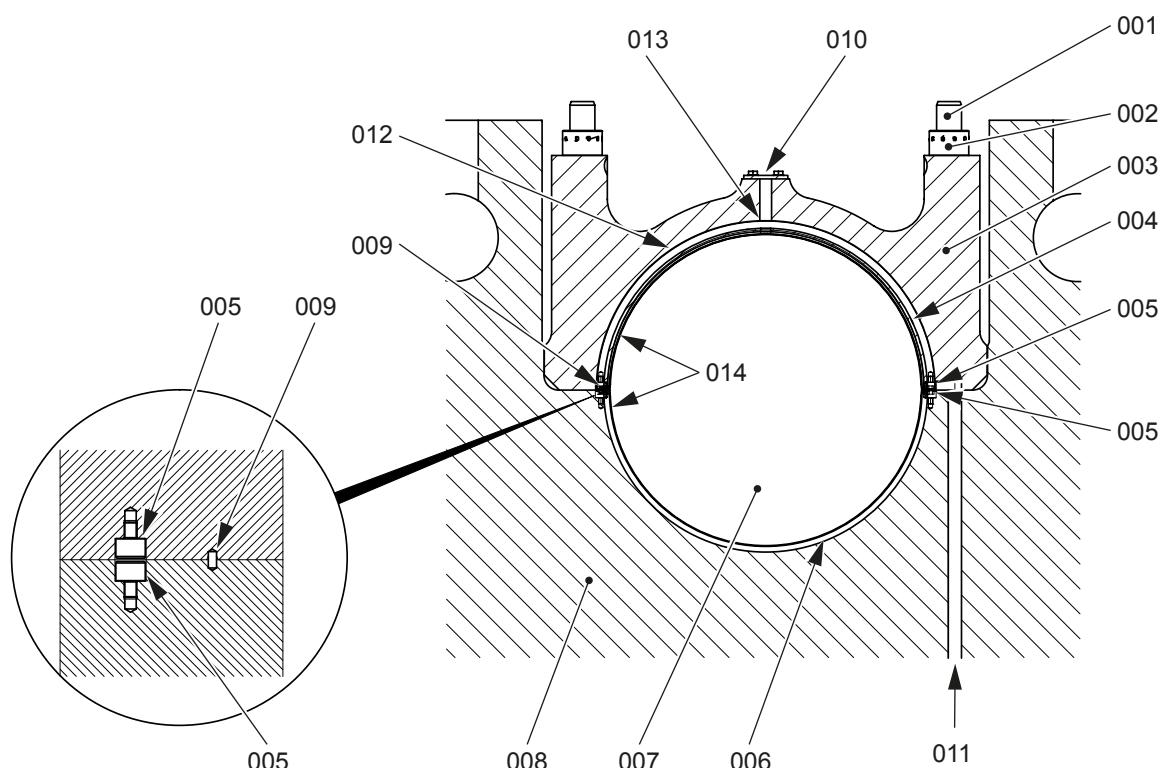
Legend

001 Bearing girder

002 Oil drain

Page left intentionally blank

5.1.2 Main bearing


The main bearings hold the crankshaft (007, [Figure 5-2](#)) and transmit the forces through the bearing girders (008) into the bedplate.

The bottom bearing shell (006) is installed in the bearing girder (008) of the bedplate and the top bearing shell (004) in the bearing cover (003). The screws (005) engage and hold the top bearing shell and bottom bearing shell in position. The spring dowel pin (009) helps to get the bearing cover (003) in position.

The elastic studs (001) have a non-hardening locking compound applied to the threads. Hydraulic tension is applied to the elastic studs during the install procedure. The round nuts (002) keep the bearing cover (003) against the bearing girder.

For the main bearings adjacent to the thrust bearing the oil flows through the oil bore (013) to the running surface of the bearing. For the other main bearings the oil flows from the oil supply pipe through the oil inlet (011) to the running surface of the bearings.

Fig 5-2 Main bearing (generic)

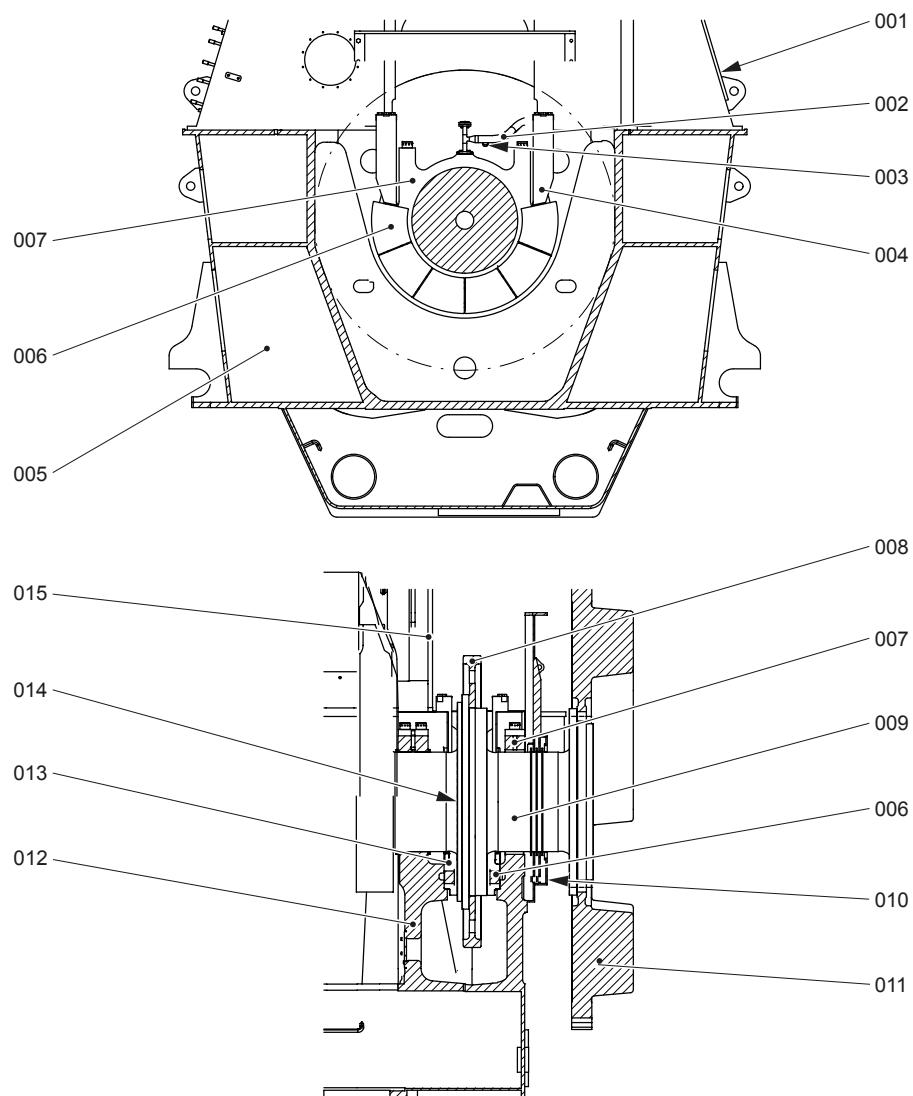
Legend

001	Elastic stud	008	Bearing girder
002	Round nut	009	Spring dowel pin
003	Bearing cover	010	Flange
004	Top bearing shell	011	Oil inlet
005	Screw	012	Oil groove
006	Bottom bearing shell	013	Oil bore
007	Crankshaft	014	Coating

Page left intentionally blank

5.1.3 Thrust bearing

The thrust bearing is installed on the crankshaft at the driving end of the engine. The thrust bearing flange (014, [Figure 5-3](#)) transmits the axial thrust from the propeller through the thrust pads into the bedplate:


- The thrust pads on the engine side adapt the propeller thrust of the ahead direction.
- The thrust pads on the driving end adapt the propeller thrust of the astern direction.

The thrust pads adapt to the clockwise or counterclockwise rotation of the engine.

The arbor supports (004) prevent circular movement of the thrust pads.

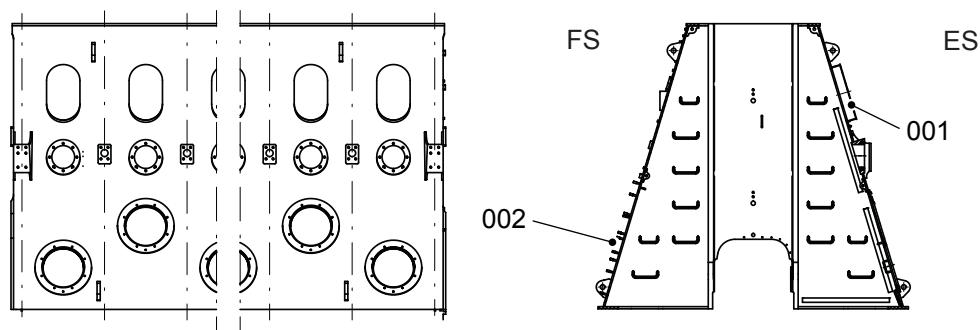
Bearing oil flows through the oil pipe (002) to the two nozzles (003). The oil flows out of the two nozzles as a spray, which becomes an oil layer between the thrust bearing flange (014) and the thrust pads (006, 013).

Fig 5-3 Thrust bearing (generic)

Legend

001	Column	009	Crankshaft
002	Oil pipe	010	2-part oil baffle
003	Nozzle	011	Flywheel
004	Arbor support	012	Bedplate
005	Bedplate	013	Thrust pad (engine side)
006	Thrust pad (driving end)	014	Thrust bearing flange
007	Bearing cover	015	Column
008	Crankshaft gear wheel		

5.1.4 Monoblock column


The monoblock column is the middle part of the engine. The monoblock column is installed on the bedplate and holds the cylinders.

On the exhaust side (ES) the monoblock column has one relief valve (001, [Figure 5-4](#)) per cylinder. The relief valves open, if the pressure in the monoblock increases too much.

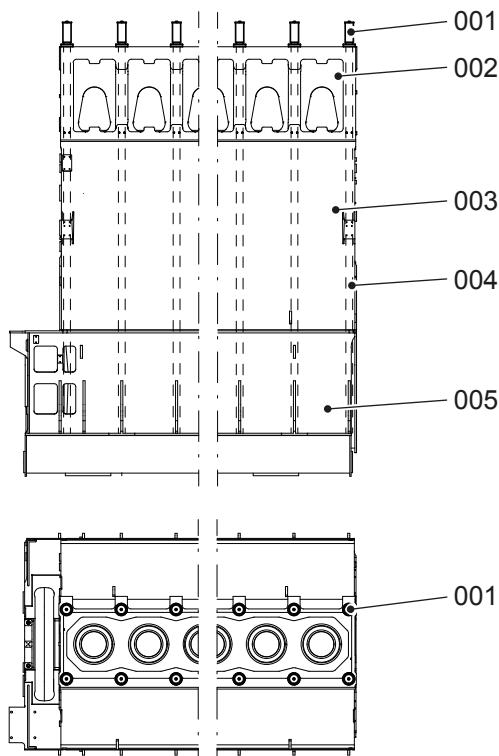
On the fuel side (FS) the monoblock column has one door (002) per cylinder. During normal operation the doors are closed and locked. For maintenance or inspection work the doors can be opened. Obey the safety rules before you open the doors.

The length of the monoblock column is related to the number of cylinders.

Fig 5-4 Monoblock column (generic)

Legend

001 Relief valve
002 Door


FS Fuel side
ES Exhaust side

Page left intentionally blank

5.1.5 Tie rod

The tie rods (004, [Figure 5-5](#)) keep the cylinder block (002), column (003) and bedplate (005) together at four locations around each cylinder.

Fig 5-5 Tie rod (generic)

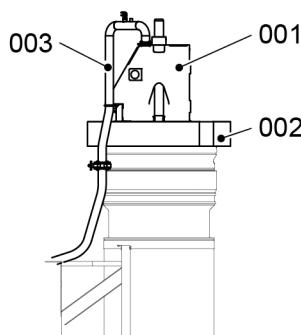
Legend

001	Protection cover	004	Tie rod
002	Cylinder block	005	Bedplate
003	Column		

If a tie rod breaks in the bottom area, a special device makes sure that the nut of the tie rod does not fall into the crankcase.

Page left intentionally blank

5.2 Group 2 - Cylinder


5.2.1 Cylinder liner

The cylinder liner is one of the primary parts of the engine. The cylinder liner is on the cylinder jacket and holds the cylinder cover and the water guide jackets. The nuts and the elastic bolts hold these parts together.

The surfaces of the cylinder liner and the cylinder jacket make a metallic seal. A non-hardening compound is applied around the surface of the metallic seal to prevent leakage.

The antipolishing ring (001) is installed in the top part of the cylinder liner. The antipolishing ring removes coke contamination at the piston crown during operation.

Fig 5-6 Cylinder - cooling water outlet (generic)

Legend

001 Exhaust valve cage
002 Cylinder cover

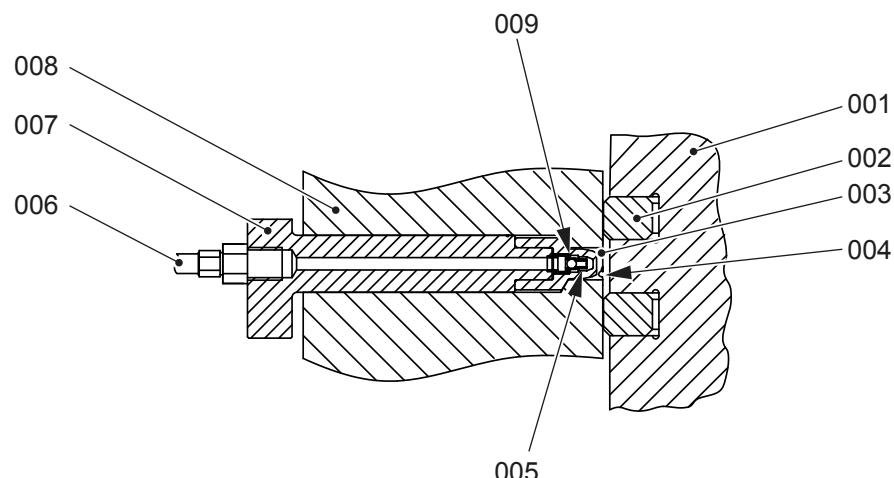
003 Cooling water outlet

Cooling water flows from the bottom water guide jacket to the top water guide jacket. Then the cooling water flows into the cylinder cover (002, [Figure 5-6](#)) and the exhaust valve cage (001). The cooling water flows back through the cooling water outlet (003) to the cooling water system of the plant.

To prevent unwanted tension in the top part of the cylinder liner the temperature of the cooling water must stay in the permitted range:

- $\pm 2^{\circ}\text{C}$ at constant load
- $\pm 4^{\circ}\text{C}$ during load changes.

Page left intentionally blank



5.2.2 Lubricating quill

The lubricating quills spray oil onto the cylinder liner wall. The lubricating quills are installed on the circumference of the cylinder liner.

The cylinder lubricating pump supplies a specified quantity of cylinder oil at high pressure through the cylinder oil inlet (006, [Figure 5-7](#)) into the lubricating quills. The non-return valve (009) opens and the cylinder oil flows out of the nozzle tip (003) and the lubricating point (004) as a spray. Some of the cylinder oil flows into the grooves of the cylinder liner wall. The non-return valve (009) prevents the exhaust gas to flow back into the oil pipe.

Fig 5-7 Lubricating quill (generic)

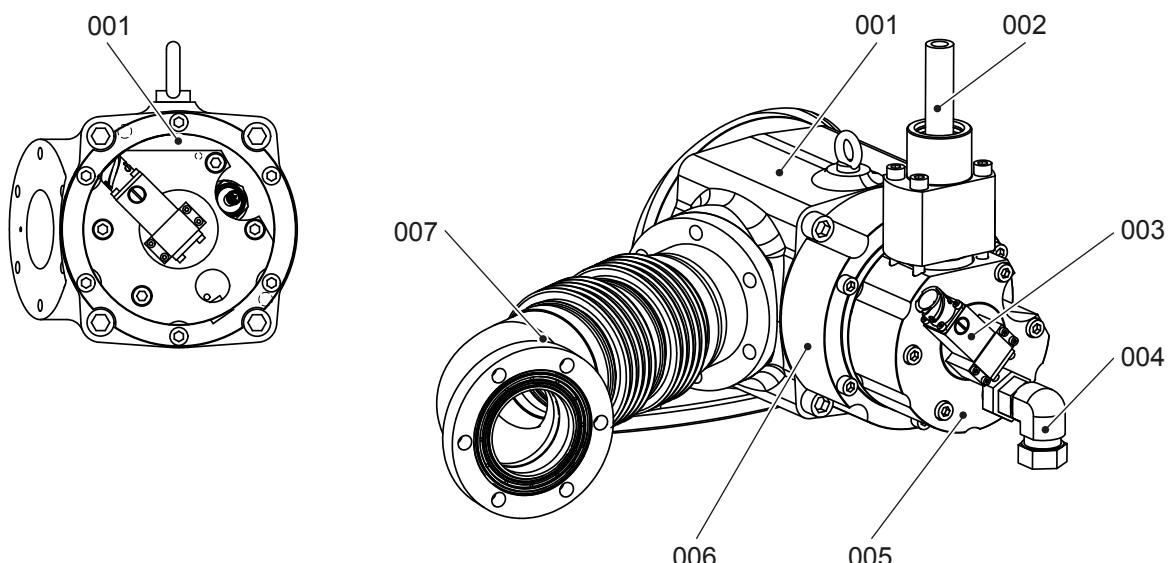
Legend

001	Piston	006	Cylinder oil inlet
002	Piston ring	007	Holder
003	Nozzle tip	008	Cylinder liner
004	Lubricating point in cylinder liner	009	Non-return valve
005	Compression spring		

Page left intentionally blank

5.2.3 Gas admission valve

The two gas admission valves (GAV) per cylinder supply the gas to each combustion chamber. When the GAV opens, there is an injection of gas into the combustion chamber.


The ECS monitors and controls the GAV. The ECS controls the gas quantity independently for each cylinder to adjust the engine load. Servo oil is used to operate the GAV, when the ECS has energized the solenoid valve (003, [Figure 5-8](#)).

Servo oil at decreased pressure is used to lubricate and to seal the valve spindle of the GAV.

The valve stroke sensor installed in the cover (006) transmits signals to the ECS. The ECS uses these signals to adjust the timing of the gas supply, which is related to the engine load.

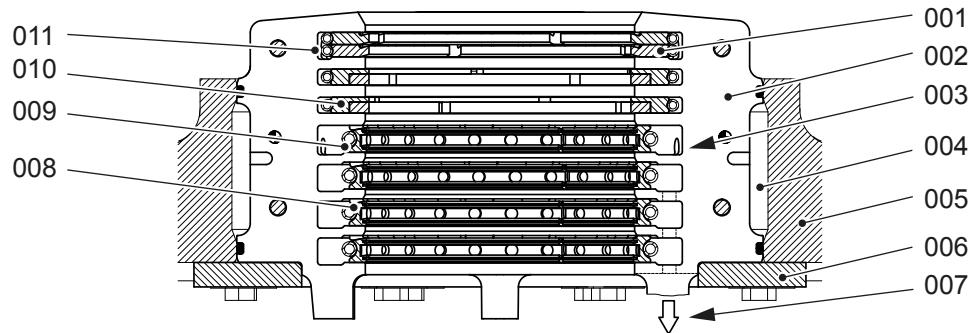
If the GAV has a leak, gas will flow through a bore in the valve body (001) to the space between the walls of the gas supply pipe (double wall). The gas will activate the gas detection sensor and the ECS will show an alarm.

Fig 5-8 Gas admission valve (generic)

Legend

001	Valve body	005	Piston cover
002	Hydraulic pipe (servo oil inlet)	006	Cover
003	Solenoid valve	007	Gas inlet pipe
004	Oil return pipe		

Page left intentionally blank


5.2.4 Piston rod gland

The piston rod gland keeps the dirty cylinder oil in the scavenge space and thus prevents contamination of the bearing oil in the crankcase. Also, the piston rod gland seals the scavenge air from the crankcase.

Use the sample valve to get system oil samples regularly. The analysis of this oil gives data about the quality of the cylinder lubrication.

Do regular checks of the leakage oil drain to make sure that oil flows freely. This prevents the risk of fire.

Fig 5-9 Piston rod gland (generic)

Legend

001	Scraper ring (4-part)	007	Oil drain
002	Housing (2-part)	008	Ring support (3-part)
003	Relief opening	009	Scraper ring (3-part)
004	Neutral space	010	Gasket (4-part)
005	Cylinder jacket	011	Tension spring
006	Support		

During operation, the two scraper rings (001, [Figure 5-9](#)) remove dirty oil from the piston rod. The dirty oil flows through oil bores and collects in the bottom of the scavenge space. The dirty oil flows out through the leakage oil drain on the fuel side.

The two gaskets (010) prevent the release of scavenge air into the crankcase.

The oil that flows through the relief openings (003) into the neutral space (004) flows into the oil drain.

The ring supports (008) hold the scraper rings (009) in position. The scraper rings (009) remove bearing oil from the piston rod. This bearing oil flows through the oil drain (007) to the crankcase.

The tension springs (011) push the scraper rings (009) and (012) against the piston rod.

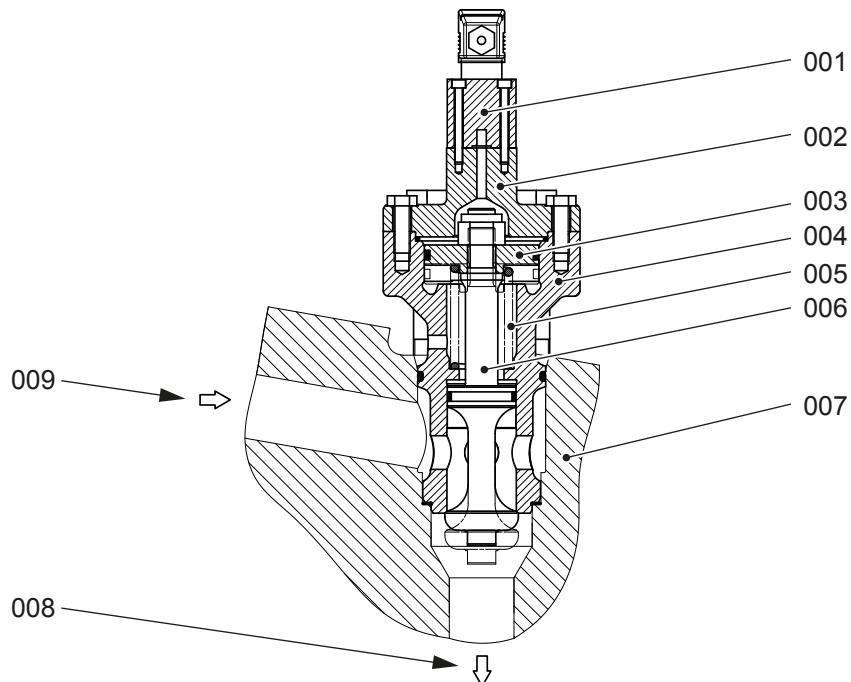
Page left intentionally blank

5.2.5 Direct controlled injection valve

The injection valves are installed in the cylinder cover of each cylinder. The injection valves spray the fuel into the combustion chamber. The ECS controls the pilot valve of the injection valves indirectly through the solenoid valve. ECS also controls the timing and the quantity of the injected fuel.

Page left intentionally blank

5.2.6 Starting valve


The starting valve in each cylinder cover supplies pressurized air into the combustion chamber in the two situations that follow:

- To start the engine before combustion starts
- To decrease the engine speed when combustion has stopped.

The ECS and the cylinder control modules (CCM-20) control and monitor the starting valves. Each starting valve opens and closes at the correct crank angle of the related cylinder. This makes the piston move down (for engine start) or makes the piston speed decrease (for engine speed decrease).

As soon as combustion starts the starting air supply stops.

Fig 5-10 Starting valve (example)

Legend

001	Solenoid valve	006	Valve spindle
002	Cover	007	Cylinder cover
003	Piston	008	Starting air outlet
004	Housing	009	Starting air inlet
005	Compression spring		

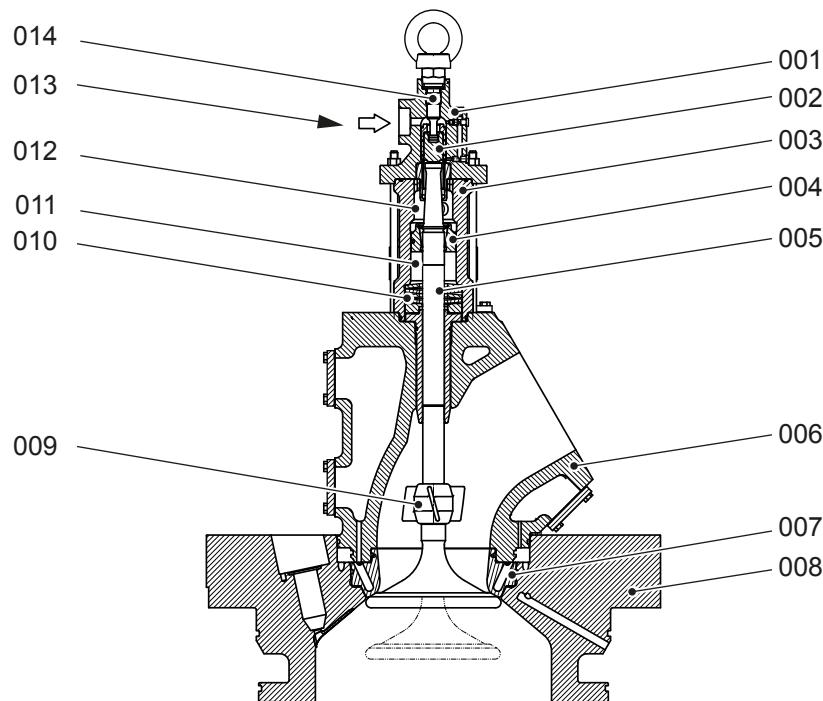
Page left intentionally blank

5.2.7 Relief valve

A relief valve is installed in each cylinder cover. The relief valve is used to relieve the air from the cylinder for slow-turning.

CAUTION

Do not open the relief valve to release pressure during engine operation.


Page left intentionally blank

5.2.8 Exhaust valve

The exhaust valve in each cylinder cover releases the exhaust gas of the combustion into the exhaust gas manifold. The hydraulic oil pressure from the exhaust valve control unit (VCU) opens the exhaust valve. The pneumatic pressure of the air spring closes the exhaust valve.

Fig 5-11 Exhaust valve (generic)

Legend

001	Upper housing	008	Cylinder cover
002	Inside piston and outside piston	009	Rotation wing
003	Lower housing	010	Cup spring
004	Air spring piston	011	Air spring
005	Valve spindle	012	Leakage oil collection space
006	Valve cage	013	Hydraulic oil inlet
007	Valve seat	014	Damper

The exhaust valve has the parts that follow:

- **Inside piston and outside piston**

The inside piston and the outside piston (002, [Figure 5-11](#)) move down when the VCU applies pressurized oil through the hydraulic oil inlet (013). The valve spindle (005) moves down and the valve seat (007) is open.

- **Rotation wing**

The exhaust gas applies a force on the rotation wing (009). This turns the valve spindle (005) to balance the heat and mechanical forces and to prevent particles on the exhaust valve.

- **Air spring**

When the exhaust valve is closed, compressed air flows through an air inlet connection into the air spring (011). When the exhaust valve opens, this air is compressed to a higher value. When the hydraulic oil pressure releases, the compressed air expands and thus closes the exhaust valve.

- **Thrust piece**

The thrust piece on the valve spindle (005) prevents damage to the inside piston (002) and to the top of the valve spindle (005) when the exhaust valve operates.

- **Valve stroke sensor**

The valve stroke sensor monitors and transmits the open and closed positions of the valve spindle (005) to the ECS.

- **Cup spring**

The cup spring (010) absorbs vibration and shock to prevent damage to the exhaust valve.

Different parts of the exhaust valve are lubricated as follows:

- Leakage oil from the outer piston and inner piston (002) lubricates the air spring piston (004). Oil in the leakage oil collection space (012) drains to the leakage oil drain.
- While the exhaust valve closes, oil flows through the air spring piston (004) and into the air spring (011). The air in the air spring (011) changes oil that collects at the bottom of the air spring into a mist. The mist lubricates the upper part of the valve spindle (005).
- Oil that collects at the bottom of the air spring (011) flows through a groove on the lower side of the distance ring and through holes in the guide bush. Thus the oil lubricates the bottom part of the valve spindle (005).
- When the exhaust valve opens, oil flows out of the air spring (011) through the throttle valve in the air spring pipe to the collector for leakage oil. The oil in the collector automatically drains through the leakage oil pipe into the crankcase.

5.2.9 Pilot injection valve

The two pilot injection valves per cylinder supply pilot fuel to each combustion chamber during gas mode to ignite the gas-air mixture.

The ECS controls the pilot injection valves. The ECS calculates the injection timing and the pilot fuel quantity related to the engine load.

The pilot injection valves have a combustion prechamber to get the best ignition timing and a stable combustion. Cooling water in the cylinder cover keeps cool the prechamber.

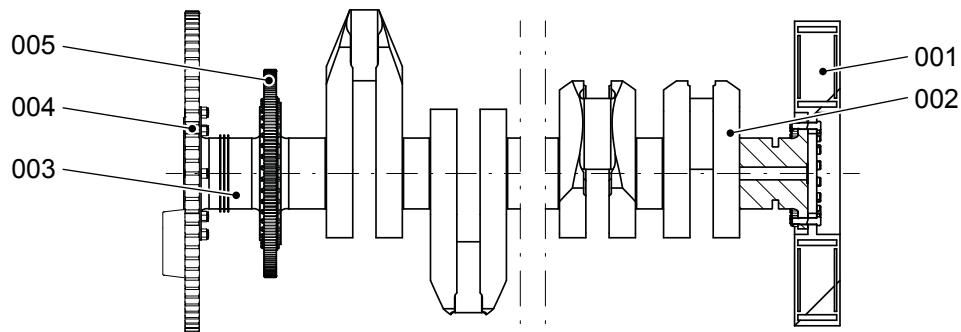
System oil is used to lubricate and to seal the pilot injection valve. The fuel and system oil leakage drains to the overflow tank.

Page left intentionally blank

5.3 Group 3 - Crankshaft, connecting rod and piston

5.3.1 Crankshaft

The crankshaft turns as it gets the power from the pistons. The crankshaft transmits the power to the attached propeller shaft of the ship.


Main bearings on the two sides of each crank (002, [Figure 5-12](#)) hold the crankshaft in position.

The crankshaft gear wheel (005) is part of the thrust bearing.

On the driving end of the crankshaft there is a flywheel (004). This flywheel decreases the pulsation from the cylinders.

The length of the crankshaft is related to the number of cylinders.

Fig 5-12 Crankshaft (generic)

Legend

001	Torsional vibration damper (optional)	004	Flywheel
002	Crank	005	Crankshaft gear wheel
003	Crankshaft		

Page left intentionally blank

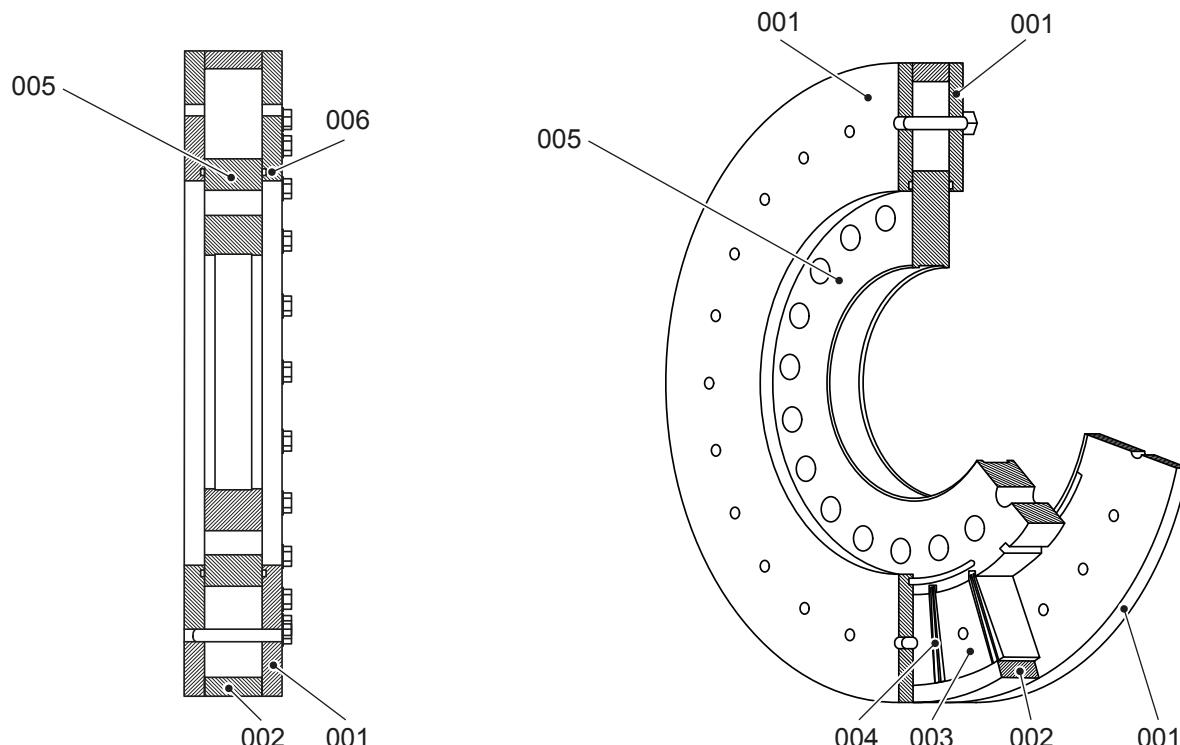
5.3.2 Torsional vibration damper

The torsional vibration damper decreases the torsional vibrations in the shafting system and in other components of the engine.

If a torsional vibration damper is necessary for the engine, one of the two damper types that follow can be used.

5.3.2.1 Steel spring damper

A steel spring damper (Figure 5-13) is a tuned torsional vibration damper. It consists of two main parts:


- The inner part (inner star (005) and spring pack (004)) is attached to the crankshaft flange at the free end.
- The outer part (side plates (001), clamping ring (002) and intermediate pieces (003)) is connected with spring packs (004) to the inner part.

The damper is supplied with pressurized system oil that fills the chambers between the inner and outer part. The usual setting value for the oil supply pressure is 2.8 bar. But the setting value can be different, refer to the specification of the damper manufacturer.

If torsional vibrations move the steel springs, oil is pressurized on one side of the oil chambers and pushed through small clearances to the other side of the chambers. This small oil flow creates the damping effect of the damper. The combined effect of spring stiffness and damping decreases the torsional vibrations in the shafting system. The damping work causes heat which is dissipated by the oil flow. The oil drains into the crankcase.

The optional damper monitoring system monitors the dynamic twist in the damper and the oil supply pressure.

Fig 5-13 Steel spring damper (generic)

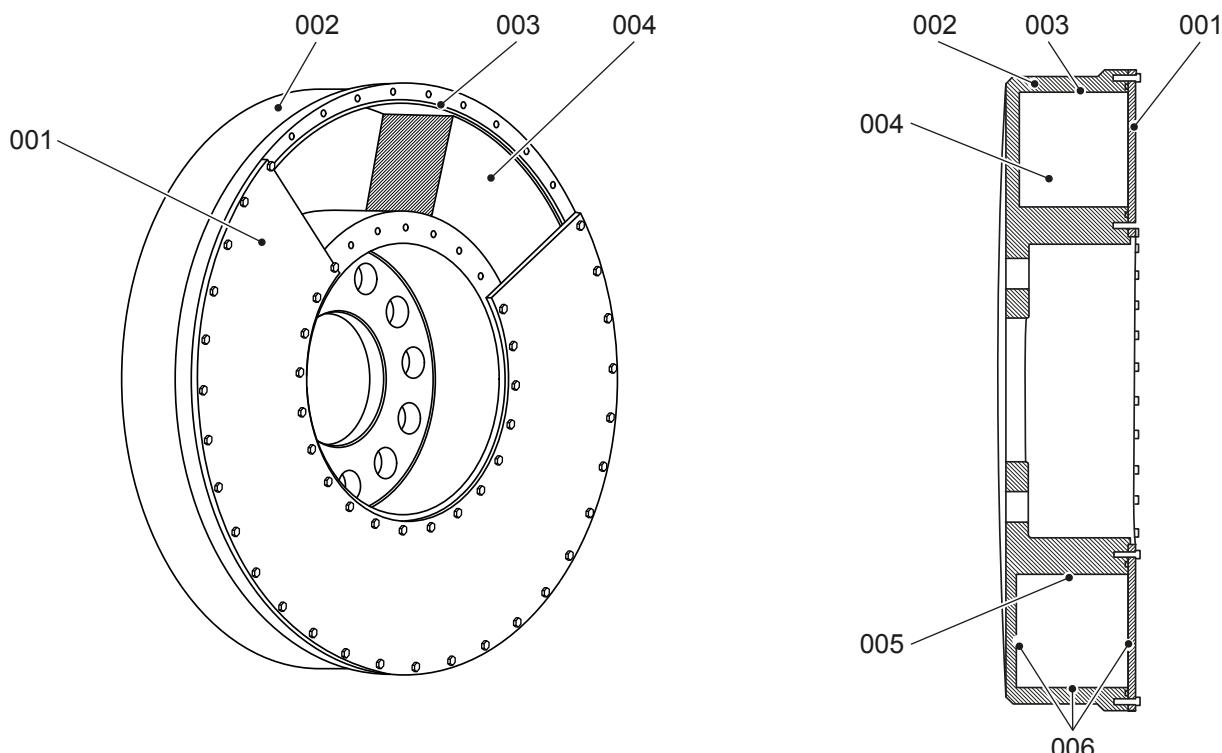
Legend

001	Side plate
002	Clamping ring
003	Intermediate piece

004	Spring pack
005	Inner star
006	Sealing

5.3.2.2 Viscous damper

A viscous damper (Figure 5-14) is a tuned torsional vibration damper. It consists of two main parts:


- The housing (002) is fully sealed and is attached to the crankshaft flange at the free end.
- The inertia ring (004) is in the housing. The bearing (005) holds the inertia ring in the housing.

Between the housing and the inertia ring there is a layer of silicone oil (006) of a specified viscosity. If no torsional vibrations occur during engine operation, the housing and the inertia ring turn with the same speed, as the silicone oil transfers the torque. If torsional vibrations occur during engine operation, the housing and the inertia ring dynamically turn at different speeds. This difference shears the silicone oil and thus decreases the vibration.

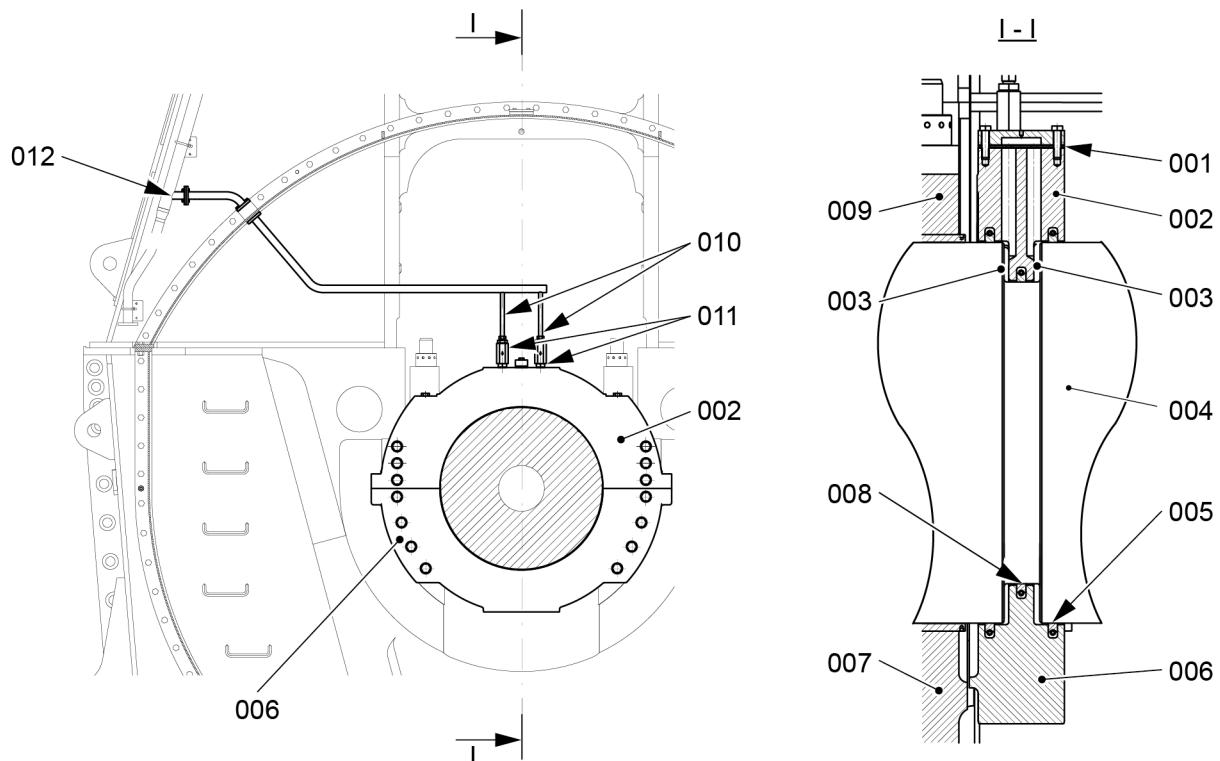
The damping work causes heat. This heat increases the temperature of the outer side of the damper. The heat dissipates to the ambient air in the crankcase. If installed, system oil is sprayed on the damper to dissipate more heat. The oil drains into the crankcase.

If the viscous damper gets too much dynamic torque and thus causes too much heat, the viscosity of the silicone oil can change. Then the damping effect can change. Thus do regularly a check of the viscosity of the silicone oil, refer to the Maintenance Manual.

Fig 5-14 Viscous damper (generic)

Legend

001	Cover	004	Inertia ring
002	Housing	005	Bearing
003	Sealing	006	Silicone oil


Page left intentionally blank

5.3.3 Axial vibration damper

The axial vibration damper decreases the axial vibrations of the crankshaft. The axial vibration damper is attached with bolts to the last bearing girder at the free end of the engine.

The axial vibration damper includes a top cylinder half (002, [Figure 5-15](#)) and a bottom cylinder half (006).

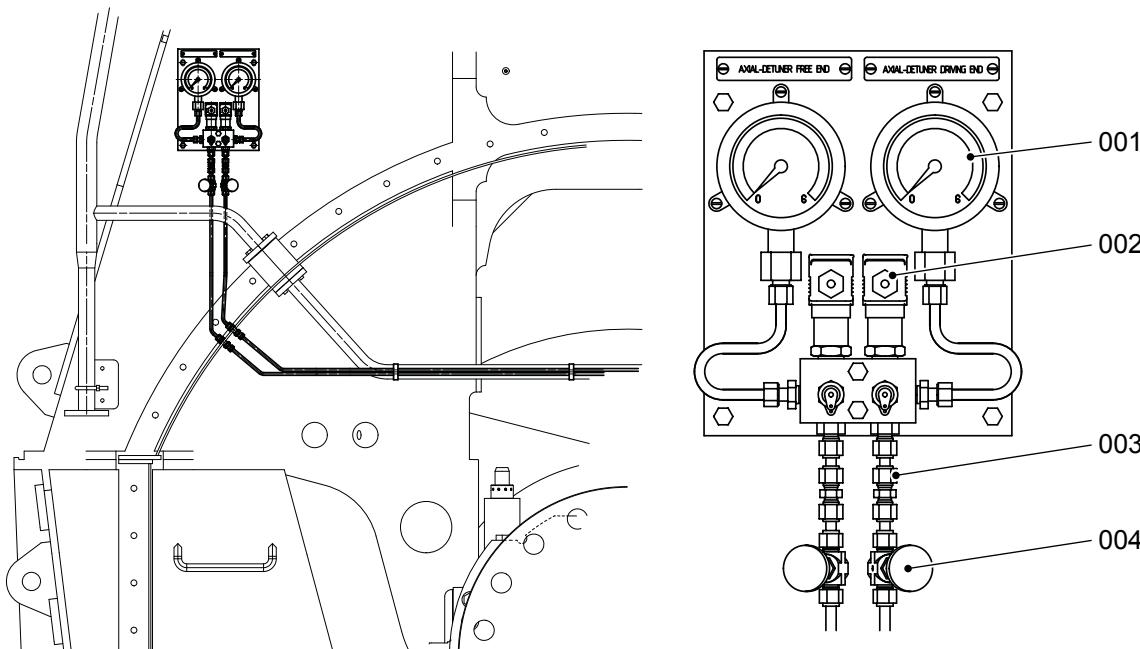
Fig 5-15 Axial vibration damper (generic)

Legend

001	Control plate	007	Bearing girder (part of bedplate)
002	Top cylinder half	008	Small sealing ring
003	Annular space	009	Bearing cover
004	Crankshaft	010	Inlet pipe
005	Large sealing ring	011	Non-return valve
006	Bottom cylinder half	012	Oil inlet

5.3.3.1 Function

Oil flows from the oil inlet (012) through the top cylinder half (002) into the two annular spaces (003). When the crankshaft (004) moves in an axial direction, the pressure of the oil in the compressed annular space (003) increases. This makes the oil slowly flow through the small holes in the control plate (001) into the other annular space (003). This slow oil flow decreases the axial vibrations. When the pressure is equal again in the two annular spaces (003), the oil flow stops.


The constant oil flow through the vent bore in the top cylinder half (002) keeps air away from the annular spaces (003).

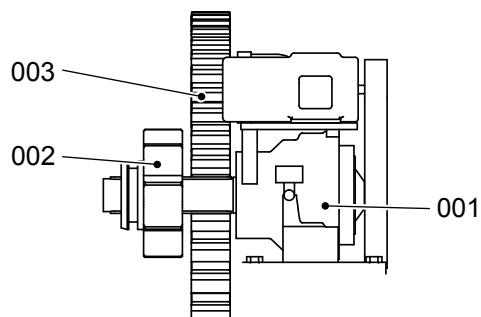
The small oil leakage through the gap of the large sealing rings (005) drains into the crankcase.

5.3.3.2 Axial vibration damper monitor

The axial vibration damper monitor monitors the oil pressure in the two annular spaces (003, [Figure 5-15](#)) of the axial vibration damper. The needle valve (004, [Figure 5-16](#)) and the throttle (003) prevent fast movement of the pointer in the pressure gauges (001).

Fig 5-16 Axial vibration damper monitor (generic)

Legend


001 Pressure gauge
002 Pressure transmitter

003 Throttle
004 Needle valve

5.3.4 Turning gear

The turning gear slowly turns the crankshaft and thus moves the pistons, if the pinion (002, [Figure 5-17](#)) is engaged on the flywheel (003). The electric motor (001) turns the pinion (002) and is attached on the driving end of the engine. Related to the ratio of the gear wheels there is approximately one full turn of the crankshaft in ten minutes.

Fig 5-17 Turning gear (generic)

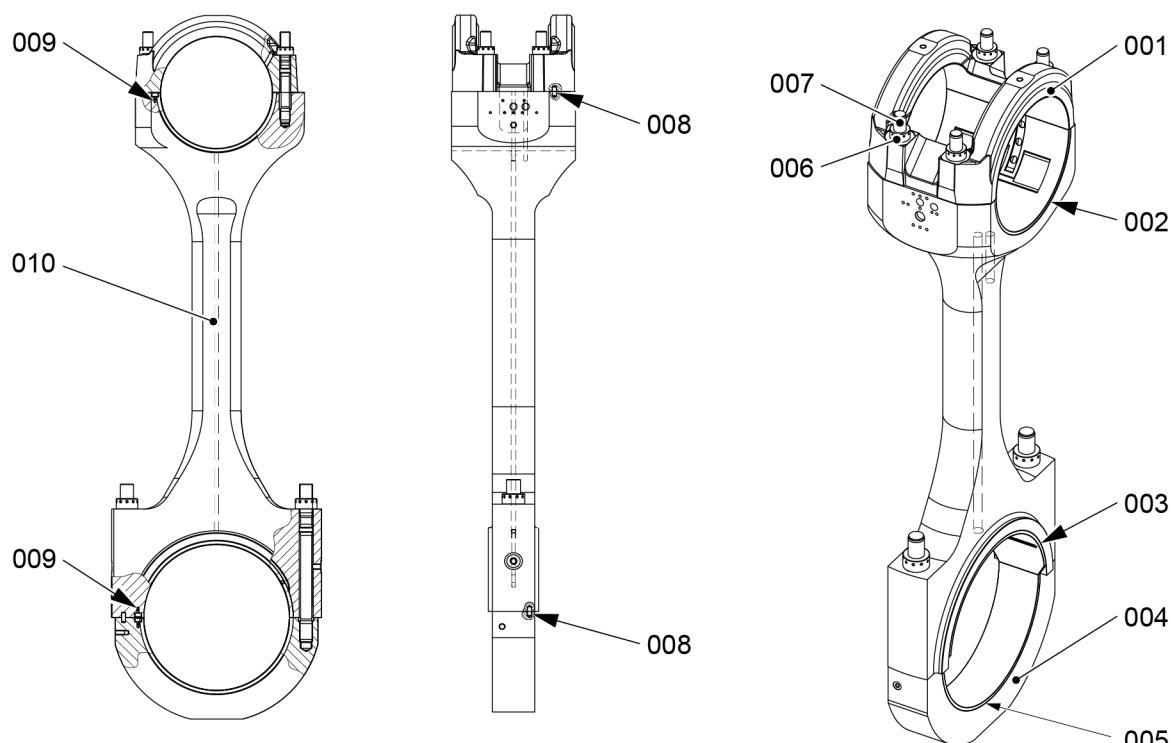
Legend

001 Electric motor

003 Flywheel

002 Pinion

Page left intentionally blank


5.3.5 Connecting rod and connecting rod bearing

The connecting rod connects the crosshead with the crankshaft and converts the linear movement of the piston into a circular movement of the crankshaft.

The bearing shells are installed on the connecting rod for the bottom end bearing and the top end bearing. The top bearing cover is lined with white metal.

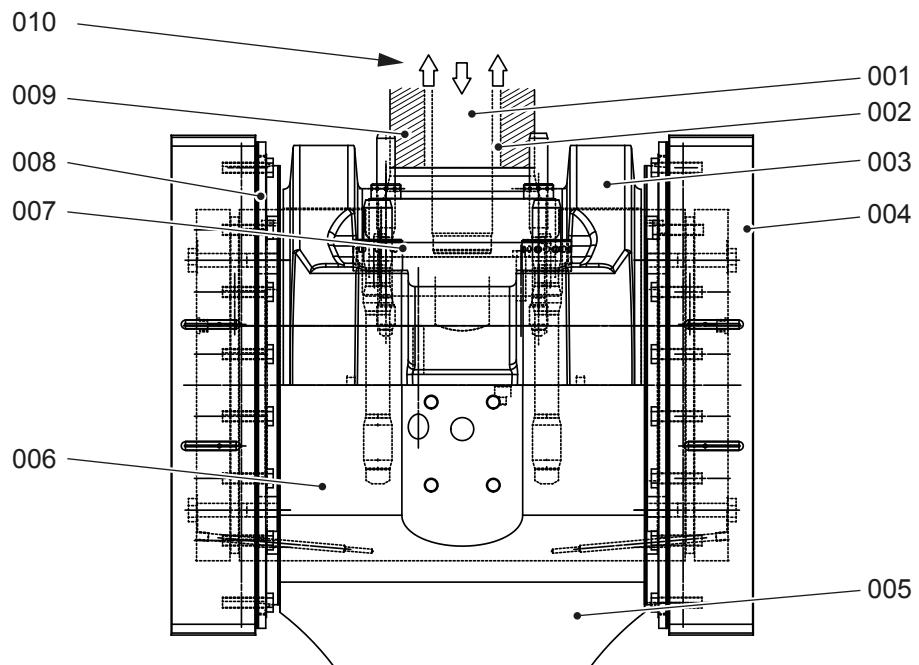
Crosshead lubricating oil flows through the guide shoe into the crosshead pin. A hole in the crosshead pin lets lubricating oil flow into the bearing shells.

Fig 5-18 Connecting rod and connecting rod bearing (generic)

Legend

001	Top bearing cover	006	Round nut
002	Bearing shell (top end bearing)	007	Elastic bolt
003	Top bearing shell (bottom end bearing)	008	Dowel pin
004	Bottom bearing cover	009	Allen screw
005	Bottom bearing shell (bottom end bearing)	010	Oil bore

Page left intentionally blank


5.3.6 Crosshead and guide shoe

The crosshead guides the piston rod (009, [Figure 5-19](#)) and absorbs the lateral forces that come from the connecting rod (005).

The piston rod (009) is attached to the compression shim (007) and the crosshead pin (006) with screws. The bearing oil necessary to keep the piston cool, flows through the space (002) to the piston. The oil from the piston flows back through the oil pipe (001) to the crosshead pin (006). Then the oil flows into the crankcase.

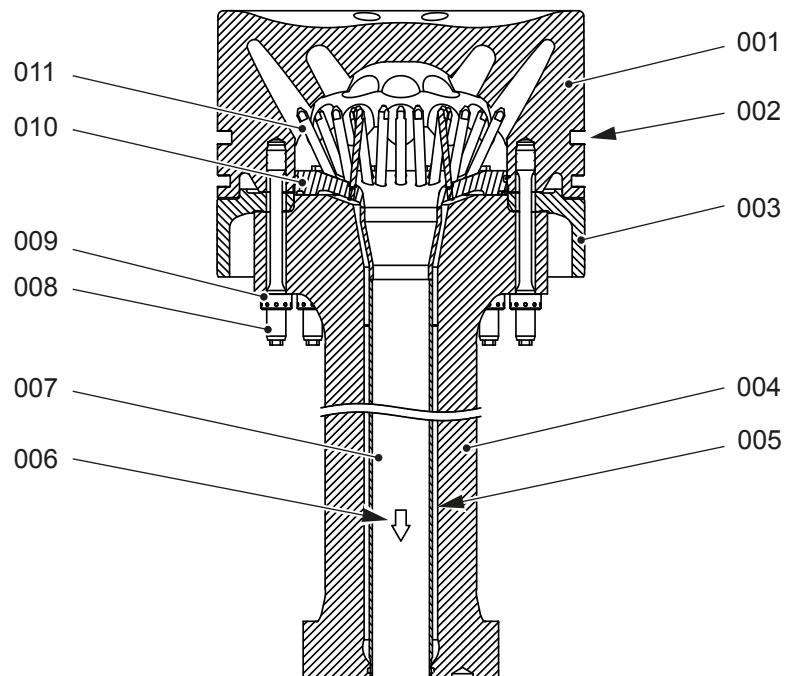
The guide shoes (004) are attached to the crosshead pin (006) and move up and down on the guide ways of the column. The guide rails (008) hold the guide shoes (004) and thus the crosshead in the horizontal position.

Fig 5-19 Crosshead and guide shoe (example)

Legend

001	Oil pipe (from piston)	006	Crosshead pin
002	Space	007	Compression shim
003	Top bearing half (top end bearing)	008	Guide rail
004	Guide shoe	009	Piston rod
005	Connecting rod	010	Oil flow (to piston and from piston)

Page left intentionally blank


5.3.7 Piston

The piston moves in each cylinder. The piston rings seal the combustion chamber. The piston transmits the force from the gas that expands in the cylinder to the crankshaft through the connecting rod.

Elastic bolts (008, [Figure 5-20](#)) and round nuts (009) attach the piston crown (001) to the piston rod (004). The piston skirt (003) is attached to the piston rod with screws. The piston rod (004) is attached to the crosshead pin in a specified position. The compression shims are installed between the piston rod and the crosshead pin. The thickness of the compression shims is related to the specified compression ratio.

System oil is used to keep cool the piston crown (001). This oil flows from the crosshead pin into the space (005) between the oil pipe (007) and the piston rod (004). The oil then flows to the spray plate (010). The oil comes out as a spray from the nozzles (011) into the cooling bores of the piston crown (001). The oil then flows through the oil pipe (007) into the crosshead pin and out through the oil bores to the crankcase.

Fig 5-20 Piston (example)

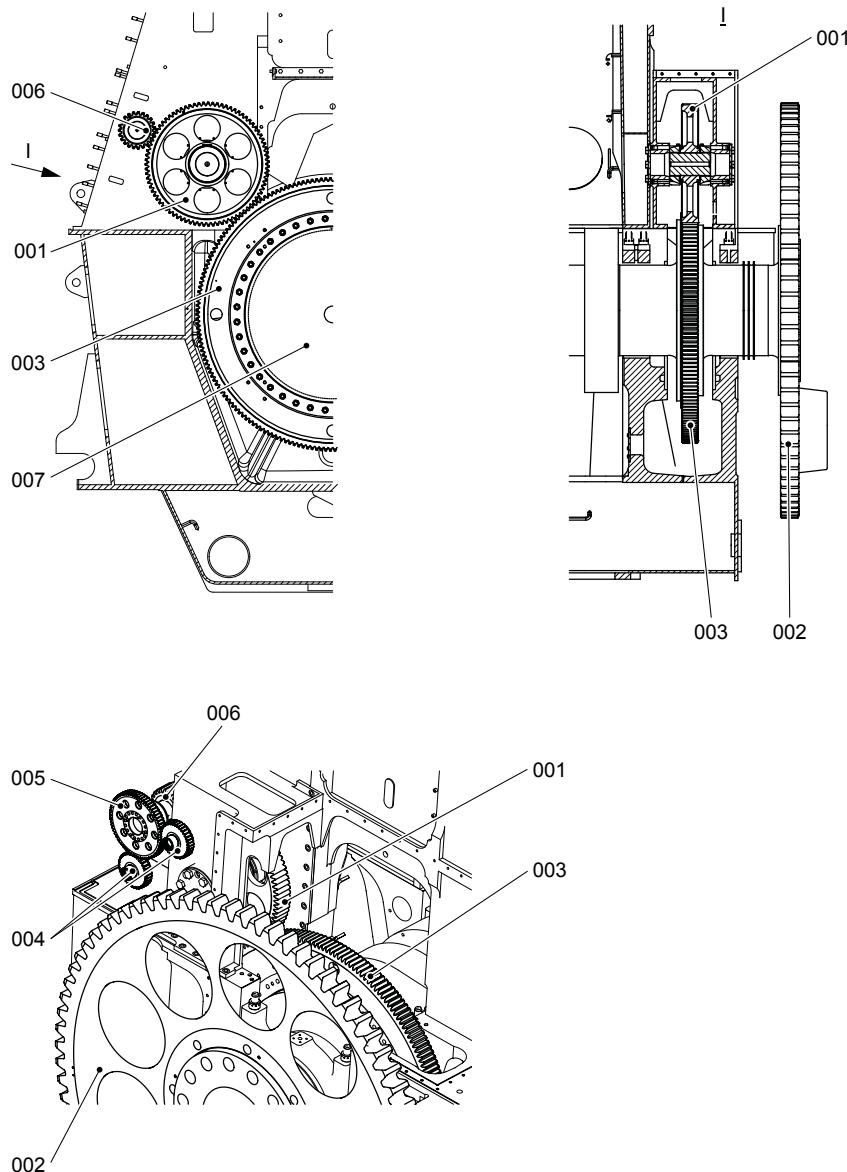
Legend

001	Piston crown	007	Oil pipe (from piston crown)
002	Piston ring groove	008	Elastic bolt
003	Piston skirt	009	Round nut
004	Piston rod	010	Spray plate
005	Space	011	Nozzle
006	Oil flow		

Page left intentionally blank

5.4 Group 4 - Supply unit drive and control components

5.4.1 Supply unit drive


The supply unit drive is installed at the driving end of the engine on the fuel side.

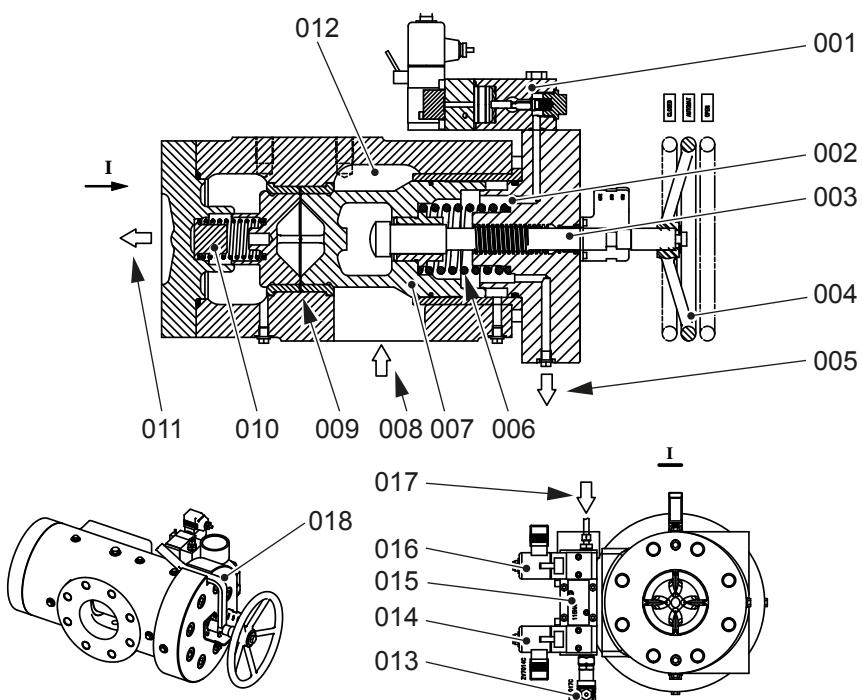
The crankshaft gear wheel (003, [Figure 5-21](#)) moves the intermediate wheel (001). The intermediate wheel (001) moves the intermediate wheel (006).

The gear wheel (005) operates the gear wheels (004) for the servo oil pumps. The camshaft of the gear wheel (005) also operates the fuel pumps.

Oil flows through an oil inlet to lubricate the bearings of the gear wheels (004). Oil also flows through the nozzles in the bearing housing to lubricate the teeth of the gear wheels (004) and the gear wheel (005).

If you hear unusual noises from the area of the supply unit drive, you must find the cause and repair the fault immediately.

Fig 5-21 Supply unit drive (generic)**Legend**


001	Intermediate wheel	005	Gear wheel (servo oil pumps)
002	Flywheel	006	Intermediate wheel
003	Crankshaft gear wheel	007	Crankshaft
004	Gear wheel (servo oil pump)		

5.4.2 Starting air shut-off valve

The starting air shut-off valve supplies the starting air pipe with starting air. The starting air shut-off valve has a hand-wheel with three positions:

- CLOSED
- AUTO
- OPEN.

Fig 5-22 Starting air shut-off valve (example)

Legend

001	Control valve	010	Non-return valve
002	Valve space	011	Starting air outlet
003	Spindle	012	Inlet chamber
004	Hand-wheel	013	Pressure switch PS5017C
005	To test valve	014	Solenoid valve CV7014C
006	Spring	015	Double check valve
007	Valve	016	Solenoid valve CV7013C
008	Starting air inlet	017	Control air inlet
009	Balance bore	018	Lever

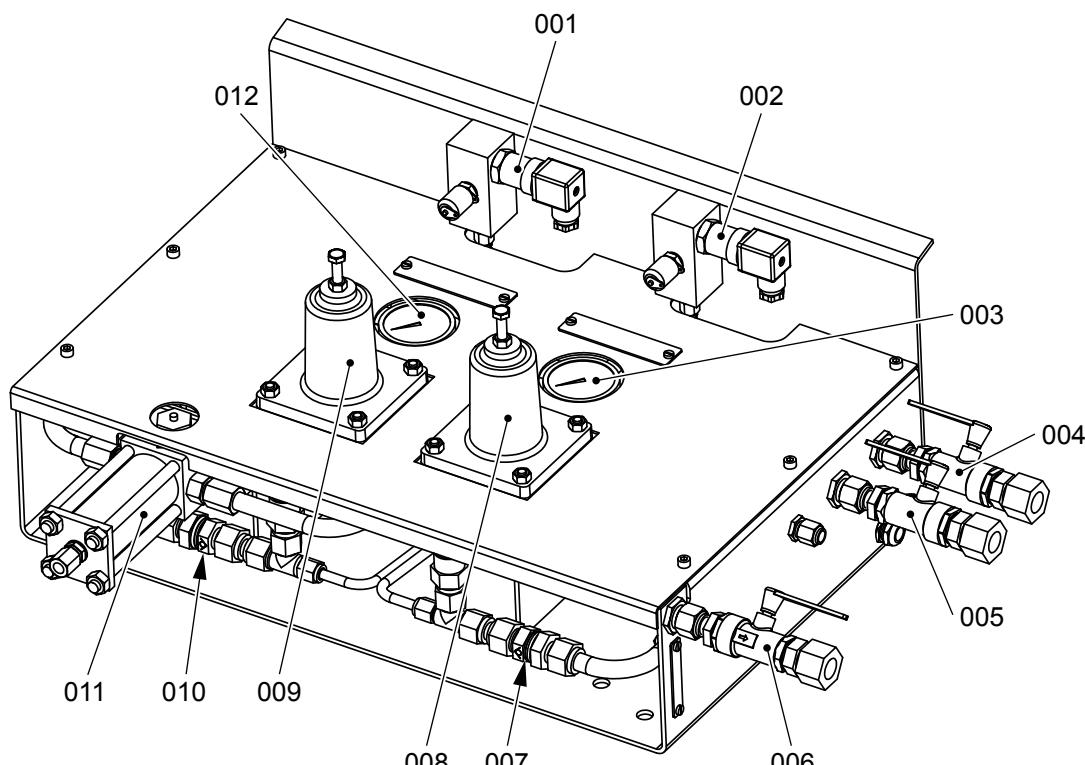
With the lever (018, [Figure 5-22](#)) you can lock the valve in the selected position. During usual operation the starting air shut-off valve is in position AUTO.

Starting air flows through the starting air inlet (008) into the inlet chamber (012), then through the balance bore (009) into the valve space (002). The spring (006) and the pressure in the valve space (002) keep the valve (007) closed.

During the start sequence the MCM-20 / IOM-20 module operates the solenoid valves (014) and (016). The control air from the control air inlet (017) opens the control valve (001) through the solenoid valve CV7014C (014) and releases the pressure in the valve space (002). The valve (007) opens and starting air from the inlet chamber (012) flows through the non-return valve (010) to the starting air outlet (011).

When the control valve (001) closes, starting air flows through the balance bores (009) and fills the inlet chamber (012) again. The valve (007) closes.

The starting air shut-off valve has a test valve. You can use this test valve for a function check of the starting air shut-off valve.


5.4.3 Control air supply

The control air supply supplies control air to the engine. The plant supply systems supply compressed air with the specified properties at the two engine connections that follow:

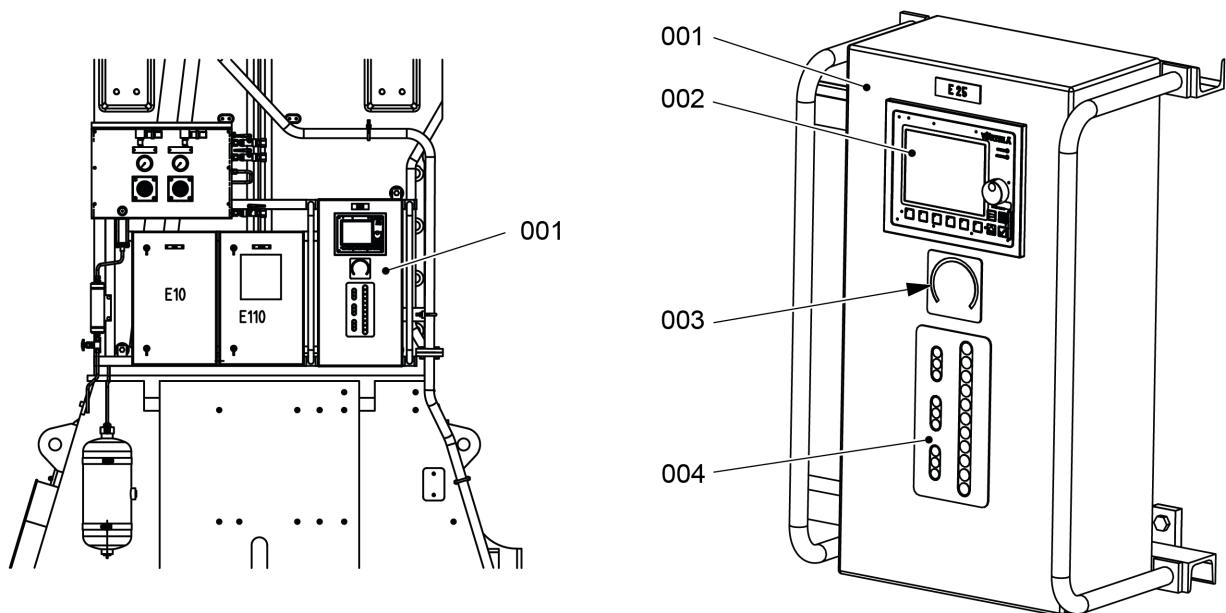
- Connection 45 (control air supply inlet) for usual supply
- Connection 40 (Starting air pipe inlet) for stand-by supply.

The pressure reducing valves (008, [Figure 5-23](#)) and (009) decrease the pressure of the compressed air to the set values. If the plant supply system for control air becomes defective, the supply changes over to stand-by supply. The non-return valves (007) and (010) control the automatic change over of the compressed air supply.

Fig 5-23 Control air supply (generic)

Legend

001	Pressure transmitter PT4411A	007	Non-return valve 35-342HA
002	Pressure transmitter PT4401A	008	Pressure reducing valve 35-23HA
003	Pressure gauge PI4401L	009	Pressure reducing valve 35-19HA
004	3/2-way valve 35-36HB (connection point A1)	010	Non-return valve 35-342HB
005	3/2-way valve 35-36HC (connection point A2)	011	Air filter 35-351HA
006	3/2-way valve 35-36HA (connection point A6)	012	Pressure gauge PI4411L


Page left intentionally blank

5.4.4 Local maneuvering stand for UNIC

The local maneuvering stand has the local control panel (001, [Figure 5-24](#)) and is attached to the engine at the free end. The local control panel has the components necessary for engine operation. Some components can look different because the remote control manufacturer supplies the local control panel (001).

For data about maneuvering instructions, refer to section [8.8 Maneuver the ship - general](#).

Fig 5-24 Local maneuvering stand (generic)

00113

Legend

001 Local control panel
002 LDU-20

003 Main engine tachometer
004 Telegraph receiver

5.4.4.1 Local control panel

NOTE: If a fault occurs in the remote control, which prevents engine control from the control room, you can operate the engine from the local control panel.

The local control panel (001) has the electronic components that follow:

- **Local display unit (LDU-20)**

There are two LDU-20 (002, [Figure 5-24](#)). One LDU-20 is installed in the local control panel (001). The other LDU-20 is installed in the engine control room. The two LDU-20 operate independently from the remote control system. For more data about the LDU-20, refer to section [6.2 Local display unit \(LDU-20\) - general](#).

- **ME tachometer**

The ME tachometer (003) shows the engine speed in the ahead or astern directions.

- **Emergency stop button**

NOTE: Not all local control panels have an emergency stop button installed.

When you operate the emergency stop button (not shown), the engine stops immediately.

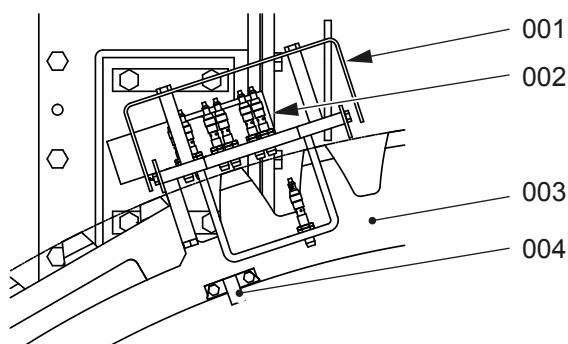
The fuel pressure control valve (PCV) releases the pressure in the fuel rail. At the same time, the fuel pump supply decreases to 0 (zero).

- For data about the PCV, refer to section [5.5.5 Pressure control valve](#).
- For data about engine stop, refer to section [8.17 Stop the engine](#).

- **Telegraph receiver**

The telegraph system is part of the propulsion control system, refer to section [6.1 Engine control system UNIC](#).

5.4.5 Pick-up for speed measurement


To measure the engine speed (rpm), proximity sensors are installed in a speed pick-up unit, attached to the support near the flywheel.

For safety, there are three electrically isolated proximity sensor groups as follows:

- Speed identification in the remote control system (RCS)
- Overspeed safety system
- Speed control system.

The proximity sensors measure the speed of the flywheel (003, [Figure 5-25](#)). When the flywheel turns, the proximity sensors (002) sense the movement of the teeth. The engine control system sends signals to the RCS to monitor the load and speed related functions. Data are also sent to the speed indication instruments.

Fig 5-25 Pick-up for speed measurement (generic)

Legend

001 Cover
002 Proximity sensor

003 Flywheel
004 Crank angle mark

Page left intentionally blank

5.5 Group 5 - Supply unit, pumps and control valves

5.5.1 Servo oil pump

The servo oil pumps supply the servo oil system with oil during usual operation. The number of servo oil pumps is related to the engine.

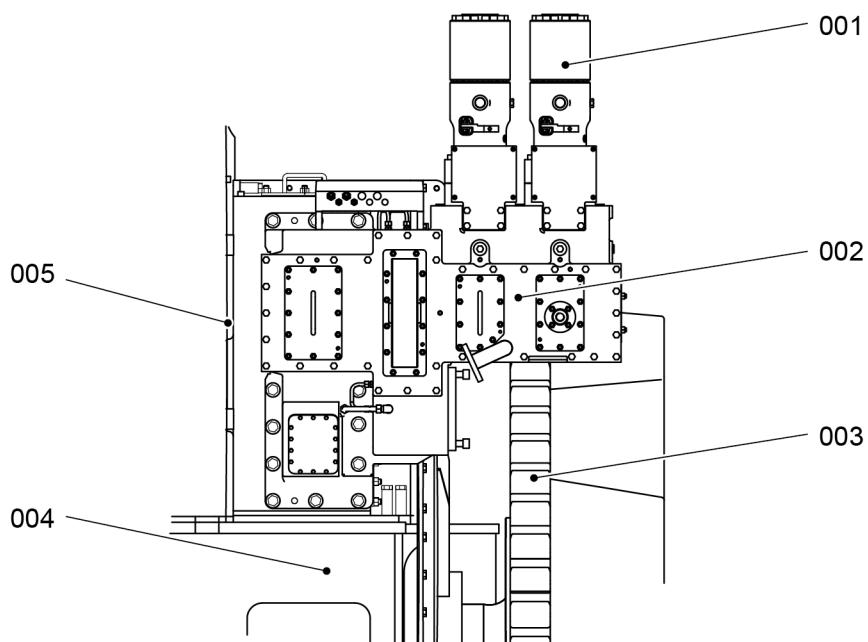
The pressure value is related to the engine load. The electrically controlled system adjusts the system pressure for the full load range, ie high pressure (approximately 300 bar) at high engine load, and decreased pressure at low engine load.

Flow sensors monitor the oil supply in each inlet pipe of the servo oil pumps. A malfunction of a servo oil pump will show in the alarm and monitoring system.

If a servo oil pump cannot turn, for safety the waisted shaft (003) will break. This will prevent too much damage to the supply unit drive.

Also if one servo oil pump becomes defective, the engine can continue to operate at full load.

NOTE: Do not operate the engine with a defective servo oil pump for too long. You must replace a defective servo oil pump as soon as possible.


Page left intentionally blank

5.5.2 Supply unit

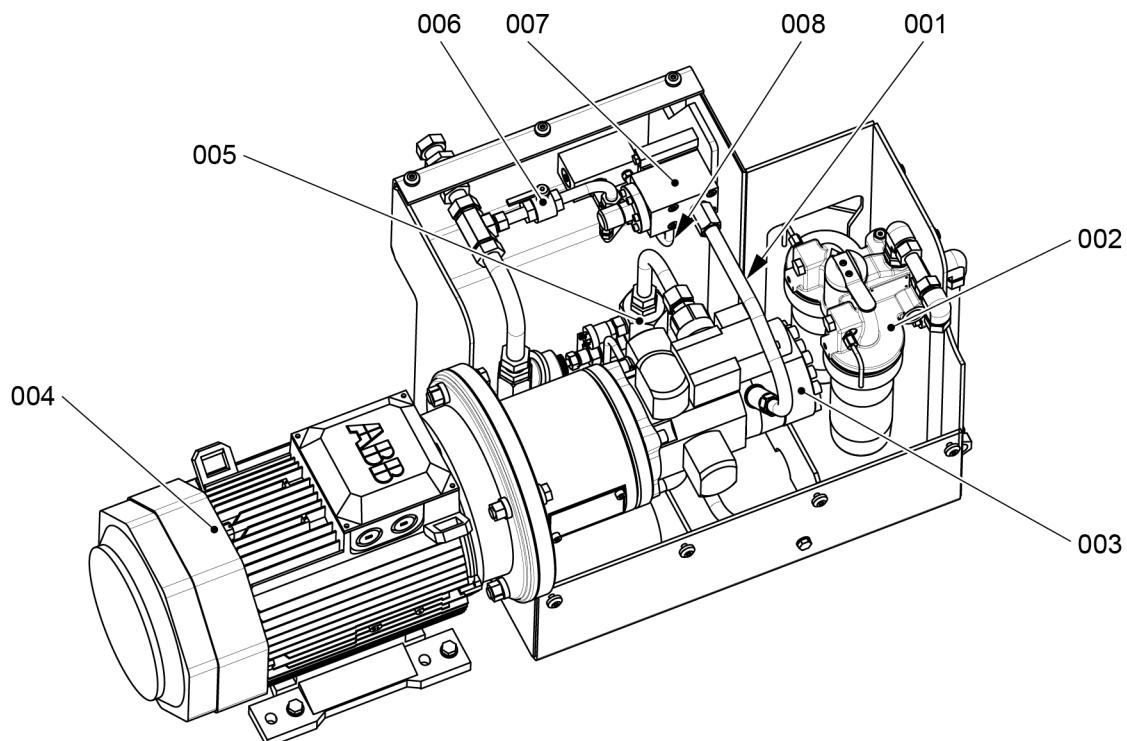
The supply unit includes the servo oil pumps and the fuel pumps. The supply unit is installed on the column at the driving end of the engine. The gear wheels and intermediate wheels in the supply unit operate the fuel pumps and servo oil pumps, refer to section [5.4.1 Supply unit drive](#).

Fig 5-26 Supply unit (example)

Legend

001	Fuel pump	004	Bedplate
002	Supply unit with covers	005	Column
003	Flywheel		

Page left intentionally blank


5.5.3 Supply unit pilot fuel

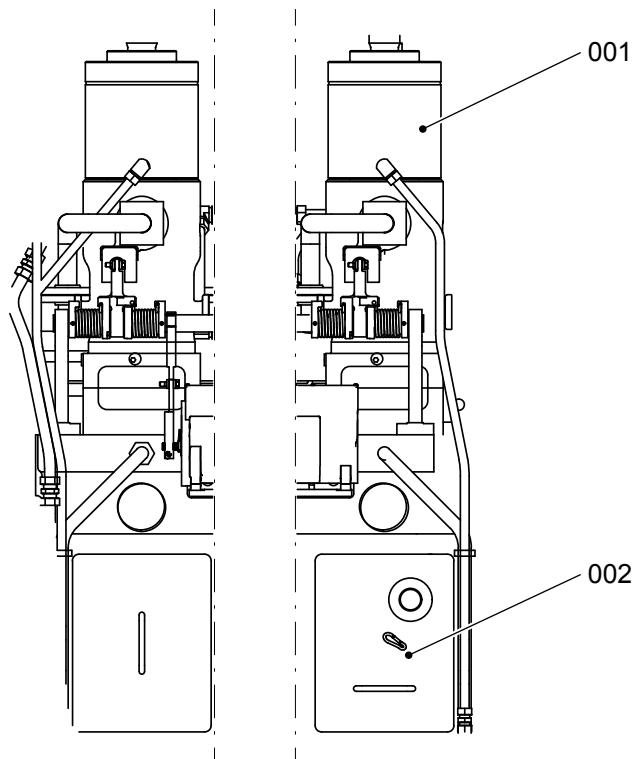
The supply unit pilot fuel increases the pressure of the pilot fuel to the necessary value.

The supply unit pilot fuel (Figure 5-27) has the items that follow:

- Pilot fuel pump (003) with electric motor (004) and built-in relief valve
- Relief valve (007)
- Duplex filter (002)
- Needle valve (006)
- Main leakage collector
- Leakage pipes.

Fig 5-27 Supply unit pilot fuel (generic)

Legend


001	HP fuel pipe	005	Measuring unit
002	Duplex filter	006	Needle valve
003	Pilot fuel pump	007	Relief valve
004	Electric motor	008	Fuel leakage pipe

Page left intentionally blank

5.5.4 Fuel pump

The fuel pumps (001, [Figure 5-28](#)) supply the fuel rail with fuel at high pressure. The number of fuel pumps is related to the engine.

Fig 5-28 Fuel pump (generic)

Legend

001 Fuel pump

002 Supply unit

5.5.4.1 Function

When the cam moves the roller (006) up, the guide piston (008) moves up. Then the bottom spring carrier (005) compresses the compression spring (004). The pump plunger (003) then moves up. The control grooves in the pump plunger (003) control the fuel quantity.

When the toothed rack (011) moves, the teeth engage with the teeth on the regulating sleeve (010) and the regulating sleeve turns. The regulating sleeve (010) turns the driver (009) and thus the pump plunger (003). The quantity of fuel that goes into the plunger chamber is related to the control position (between 0 for zero supply and 10 for maximum supply).

5.5.4.2 Lubrication

Engine lubricating oil, which flows through the lubricating oil inlet into the bottom housing, lubricates the fuel pump.

Leakage fuel lubricates the pump plunger (003). The leakage fuel and the engine lubricating oil from the regulating sleeve (010), flows through the drain bore, into an internal bore in the housing of the fuel pump unit.

5.5.4.3 Operation with an unserviceable fuel pump

If a fuel pump is unserviceable (eg the pump plunger cannot move) or the HP fuel pipe is broken (between the fuel pump and the fuel rail) the fault must be repaired immediately.

If the fault cannot be repaired, it is possible to cut out the unserviceable fuel pump. Related to the number of installed fuel pumps, there are limits of operation.

5.5.5 Pressure control valve

The pressure control valve (PCV) is attached to the fuel rail (007) and has the functions that follow:

- **Usual operation**

During usual operation the engine software controls the fuel pressure. The pressure in the fuel rail is less than that necessary to open the PCV, thus the PCV is usually closed. The PCV only opens, if the pressure increases to more than the set value.

- **Operation with a defective item**

If an item becomes defective (eg missing or incorrect control signals, a flow control valve of a fuel pump is unserviceable), the PCV controls the pressure in the fuel rail. The engine control sets the fuel pump to the maximum supply pressure. The PCV will open to gradually drain sufficient fuel to keep the adjusted pressure. If this occurs, longer engine operation time must be prevented to save fuel.

After this operation mode, do a check of the valve for a tight seal. The seal can be damaged. You can hear a loud sound like a whistle. Replace the valve seal if necessary.

- **Engine stand-by**

During engine stand-by, the engine software opens the PCV. This gives a constant flow of fuel through the fuel system to keep the fuel warm.

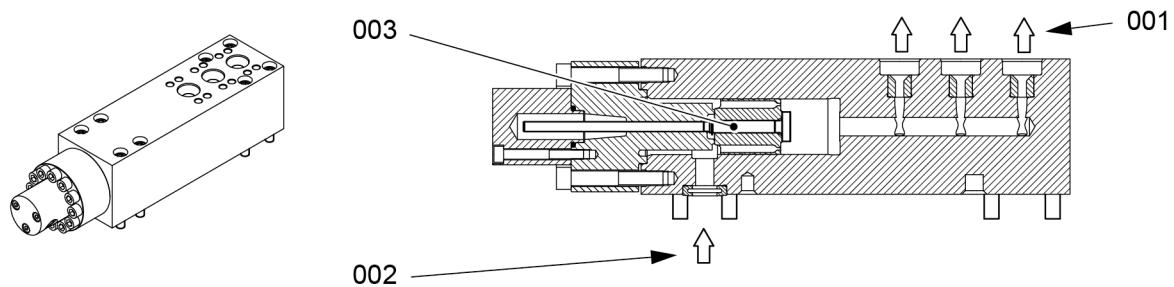
- **Emergency stop**

If an emergency stop is activated, the safety system operates the solenoid valve (001) and the fuel pressure in the fuel rail decreases immediately to less than 200 bar (usually to 0 bar). Thus, fuel injection is not possible.

Attached to the PCV are the solenoid valve (001), the relief valve (003) and the fuel return pipes (004, 005). The relief valve opens, if the fuel pressure is more than the specified pressure.

Page left intentionally blank

5.5.6 Flow limiting valve


For each cylinder there is one flow limiting valve installed on the fuel rail.

The position of the piston (003, [Figure 5-29](#)) gives the quantity of fuel for the injection. When the injection valves open, the piston (003) moves to the right until the injection stops. When the injection valves are closed, the piston (003) moves back to the start position.

If the injection time is too long (for example if an injection valve is stuck open), the piston (003) closes the supply.

If an injection valve is damaged, the flow limiting valve sets the maximum limit of fuel that can be injected into the cylinder.

Fig 5-29 Flow limiting valve (generic)

Legend

001	Fuel outlet (number related to the engine)	003	Piston
002	Fuel inlet		

Page left intentionally blank

5.5.7 Exhaust valve control unit

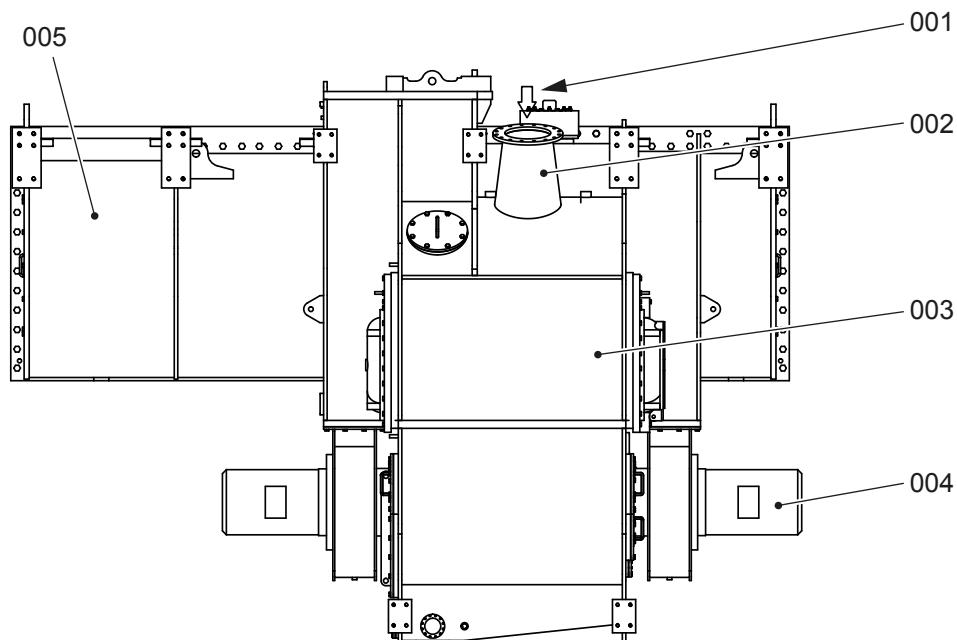
The exhaust valve control units (VCU) control the servo oil to the exhaust valve of the related cylinders. The exhaust valve control units are attached to the servo oil rail.

When the solenoid valve operates, servo oil is released to the slide rod. This releases servo oil to the piston (003) and thus oil opens the exhaust valve.

Page left intentionally blank

5.6 Group 6 - Scavenge air components

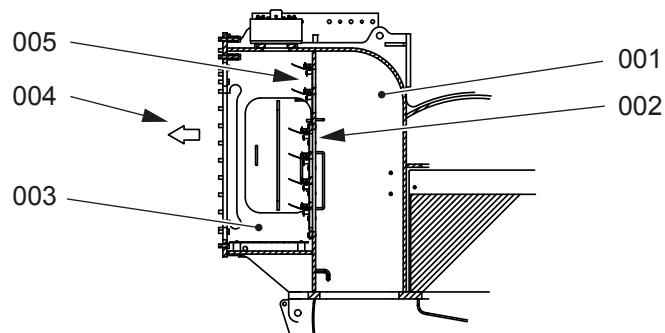
5.6.1 Scavenge air receiver


The scavenge air receiver (005, [Figure 5-30](#)) supplies the cylinders with the applicable quantity of air.

The scavenge air receiver is a welded assembly attached to the cylinder block on the exhaust side.

The relief valve, installed on the scavenge air receiver, opens when the air pressure increases to more than the permitted value in the air space (001, [Figure 5-31](#)).

For more data about the scavenge air system, refer to section [4.8 Scavenge air system](#).


Fig 5-30 Scavenge air receiver (example)

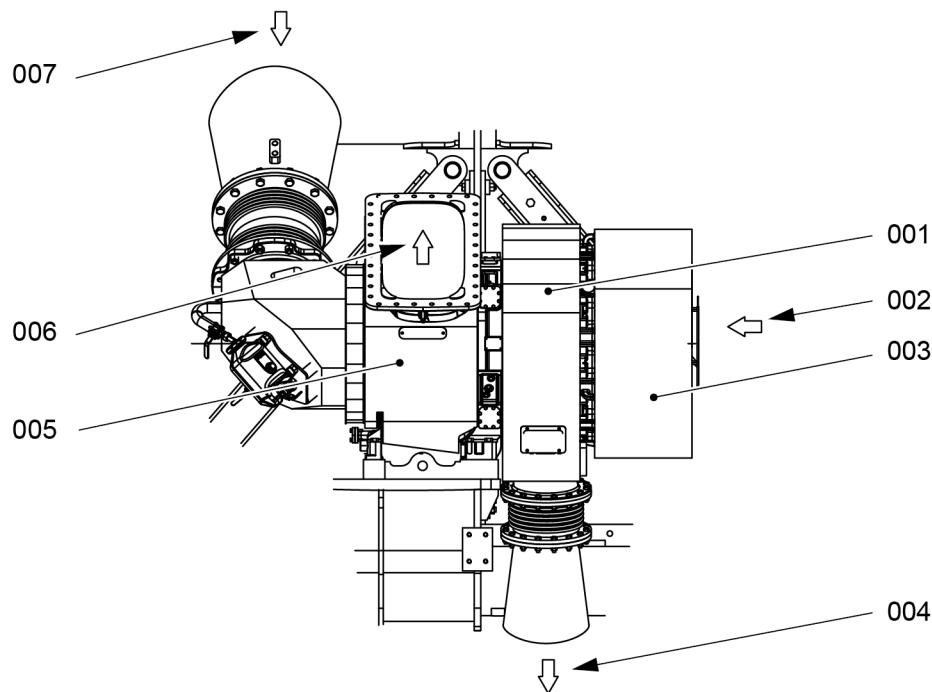
Legend

001	Scavenge air from turbocharger	004	Auxiliary blower
002	Diffuser	005	Scavenge air receiver
003	Scavenge air cooler		

The longitudinal wall (002, [Figure 5-31](#)) divides the scavenge air receiver into the receiver space (003) and the air space (001). The flaps (005) are attached to the longitudinal wall (002). The flaps (005) prevent the scavenge air to flow back into the air space (001).

Fig 5-31 Scavenge air receiver - cross section (example)**Legend**

001 Air space
002 Longitudinal wall
003 Receiver space


004 Outlet to piston underside
005 Flap

5.6.2 Turbocharger

The compressor (001, [Figure 5-32](#)) of the turbocharger compresses the scavenge air to the applicable pressure. The compressor is directly attached to the shaft of the turbine (005). The remaining energy of the exhaust gas drives the turbine and thus the compressor.

The number and the size of the turbochargers is accurately tuned to the engine and the number of cylinders.

Fig 5-32 Turbocharger (example)

Legend

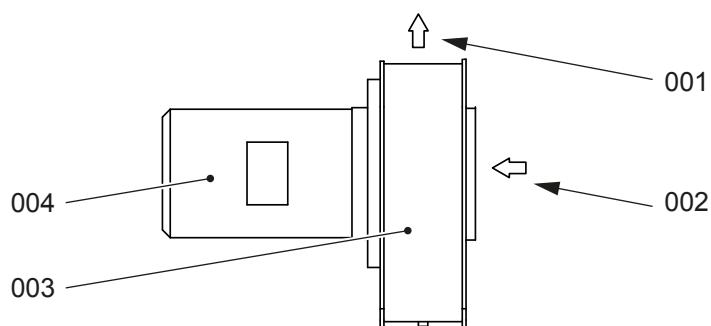
001	Compressor	005	Turbine
002	Air inlet	006	Exhaust gas outlet
003	Silencer	007	Exhaust gas inlet
004	Air outlet		

If a turbocharger becomes defective, you must stop the engine as quickly as possible to prevent damage.

If repair or replacement of a turbocharger is not immediately possible, you can cut out the defective turbocharger, refer to section [10.14 Temporary isolate a defective turbocharger](#). Then the engine can operate at decreased load, refer to the limits in section [8.3 Start the engine - general](#).

WinGD recommends to regularly clean the turbochargers and the silencers, refer to section [\[section not applicable for this engine\]](#). This prevents or decreases contamination of the turbochargers and thus increases the time between overhauls.

Page left intentionally blank


5.6.3 Auxiliary blower

The two auxiliary blowers supply air from the air space into the receiver space during the engine start and during operation at low load. Flaps prevent airflow back from the receiver space to the air space during usual operation of the turbochargers and during engine stop.

The electric motor (004, [Figure 5-33](#)) operates the blower (003).

The auxiliary blowers are installed on the scavenge air receiver, refer to section [5.6.1 Scavenge air receiver](#).

Fig 5-33 Auxiliary blower (generic)

Legend

001 Air outlet
002 Air inlet

003 Blower
004 Electric motor

During the engine start procedure, the first auxiliary blower starts immediately. After approximately two to three seconds, the other auxiliary blower starts.

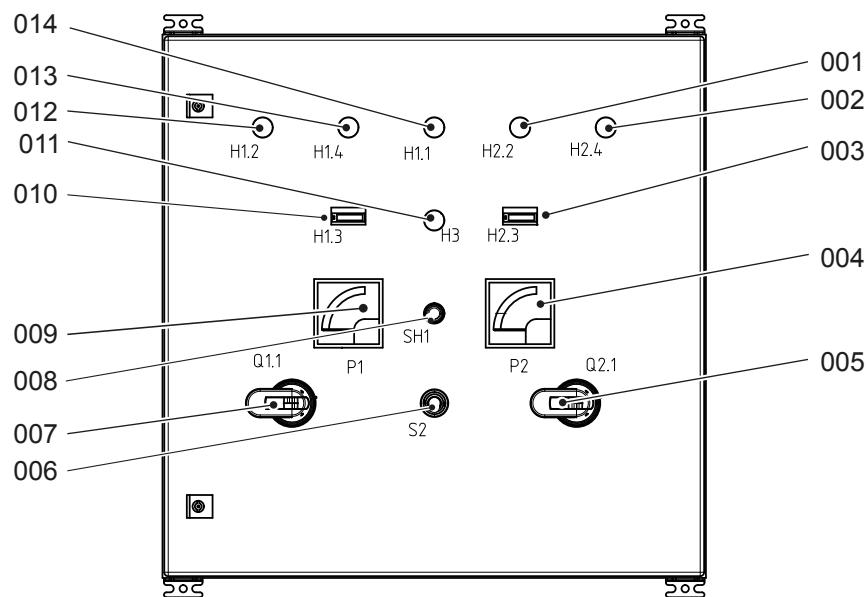
If one of the auxiliary blowers becomes defective, you also can start and operate the engine. At less than full load, there will be more exhaust smoke.

If the two auxiliary blowers become defective, you cannot start the engine.

When the turbochargers give sufficient pressure in the scavenge air receiver, the auxiliary blowers stop.

If the scavenge air pressure decreases below the minimum pressure necessary, the auxiliary blowers operate as given above.

The auxiliary blower switch box (refer to section [5.6.4 Auxiliary blower switch box](#)) controls and gives data about the condition of the auxiliary blowers.


Page left intentionally blank

5.6.4 Auxiliary blower switch box

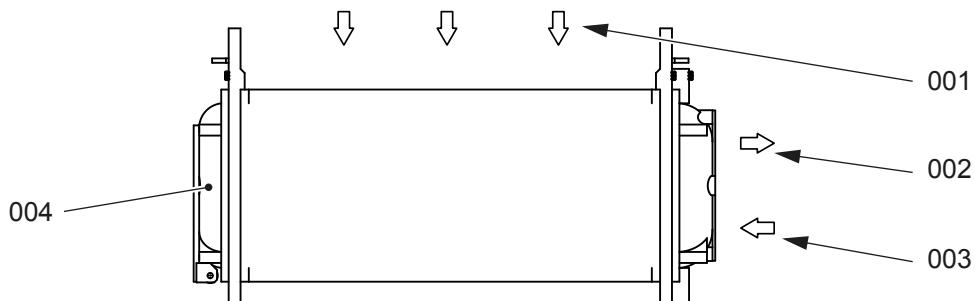
The auxiliary blower switch box controls and gives data about the condition of the auxiliary blowers.

Fig 5-34 Switch box (generic)

Legend

001	Indicator (auxiliary blower No. 2 running)	008	Restart push button
002	Indicator (auxiliary blower No. 2 overload)	009	Ampere meter (auxiliary blower No. 1)
003	Hour counter (auxiliary blower No. 2)	010	Hour counter (auxiliary blower No. 1)
004	Ampere meter (auxiliary blower No. 2)	011	Supply fault indicator
005	Main switch (auxiliary blower No. 2)	012	Indicator (auxiliary blower No. 1 running)
006	Emergency push button	013	Indicator (auxiliary blower No. 1 overload)
007	Main switch (auxiliary blower No. 1)	014	Control voltage indicator

Page left intentionally blank


5.6.5 Scavenge air cooler

The scavenge air cooler (SAC) decreases the temperature of the hot compressed air from the turbochargers. This increases the density of the air and thus increases the quantity of air that is supplied to the cylinders.

The cooling water flows constantly through the tubes of the SAC and flows back to the cooling water system of the plant.

The SAC has a cover (004, [Figure 5-35](#)). For maintenance you can remove the cover.

Fig 5-35 Scavenge air cooler (generic)

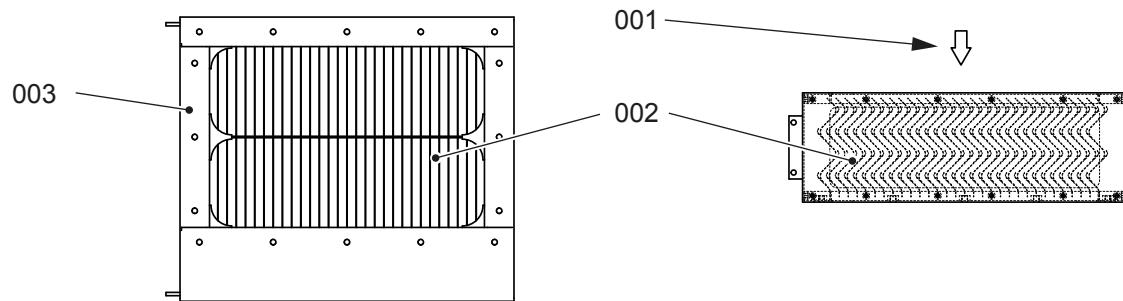
Legend

001 Air flow
002 Cooling water outlet

003 Cooling water inlet
004 Cover

WinGD recommends to regularly clean the scavenge air coolers, refer to section [9.4 Clean the scavenge air cooler during operation](#). This prevents or decreases contamination of the scavenge air coolers and thus increases the time between overhauls.

Page left intentionally blank



5.6.6 Water separator

The water separator removes water from the scavenge air. This prevents damage and gives better combustion in the cylinders. Water occurs when the scavenge air cooler (SAC) decreases the temperature of wet air. Water also occurs during the wash procedure of the SAC.

The profiles (002, [Figure 5-36](#)) hold back the water in the air flow. This water collects at the bottom of the frame (003) and then flows back to the drain system.

Fig 5-36 Water separator (generic)

Legend

001 Air flow
002 Profile

003 Frame

Page left intentionally blank

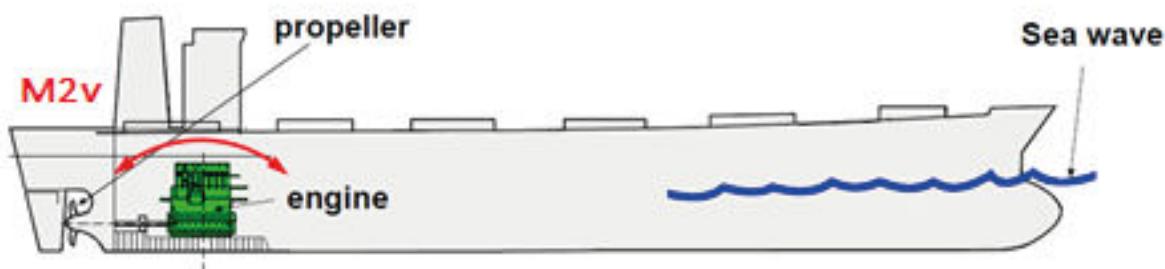
5.7 **Group 7 - Cylinder lubrication and balancer**

5.7.1 **Cylinder lubrication**

For information about the cylinder lubrication oil, refer to section: [12.1 General for operating media](#)

For information about the cylinder oil system in general, refer to section: [4.6 Cylinder oil system](#)

Page left intentionally blank


5.7.2 Integrated electrical balancer (iELBA)

The optional integrated EElectrical BAlancer (iELBA) decreases second order vertical mass moments (M_{2v}) of the engine, refer to [Figure 5-37](#).

NOTE: For the engine itself it is not necessary to install a balancer. But a balancer decreases the exitation forces of the engine. A calculation of the mass moment M_{2v} shows if a balancer is necessary for a specified hull design.

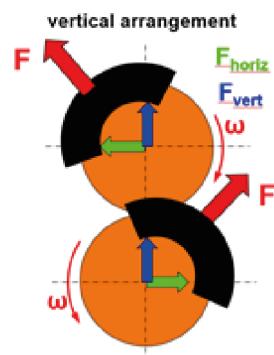
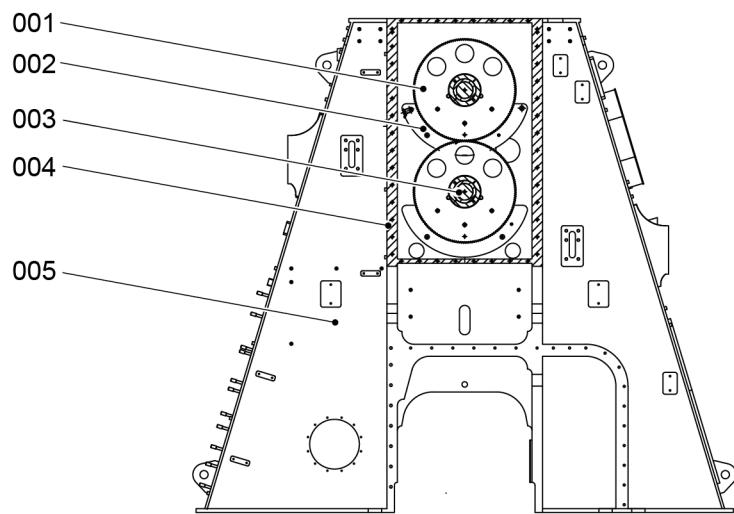
Usually there are two iELBAs installed, one at the free end (FE) and one at the driving end (DE) of the engine. For special designs it is possible to install only one balancer at the free end (FE) or at the driving end (DE).

Fig 5-37 Effect of second order moments (M_{2v}) of the engine

5.7.2.1 Function

An electric motor operates the two gear wheels (001, [Figure 5-38](#)) and thus the counterweights (002) in opposite directions. The horizontal elements (F_{horiz}) of the forces (F) are always canceled. The vertical elements (F_{vert}) are always added to a resulting vertical force. This resulting force operates up and down with the same frequency as the counterweights (002) turn. The resulting force is transmitted through the bearings (003) to the column (005) and thus to the engine.

The rotating speed (ω) of the counterweights (002) is always two times the engine rotating speed and is in phase to the engine. Thus the second order vibrations in the hull are decreased.



Engine system oil lubricates the iELBA. The oil flows back to the crankcase.

NOTE: Operate the iELBA only if system oil is available at correct pressure and flow rate.

A brake resistor for each balancer changes the rotating energy of the iELBA to heat in the conditions that follow:

- If the engine speed changes quickly.
- If there is an emergency stop of the iELBA.
- If there is an energy sink during the phase synchronisation of the iELBA.

Fig 5-38 iELBA - function

Legend

001 Gear wheel
002 Counterweight
003 Bearing

004 Housing
005 Column

5.7.2.2 Control system

Each iELBA has two control cabinets (E38 and E39). The control system monitors the speed of the electric motor and the rotating speeds and phases of the counterweights (002) and of the flywheel of the engine. The control system also uses TDC and BDC data of piston #1 of the engine. A frequency converter controls the electric motor.

When the iELBA is started, there are two states that are indicated on the control cabinet:

- **Swing state**

The electric motor swings the counterweights back and forward some times until the counterweights turn fully.

- **Run state**

The iELBA has started to turn fully. The control system increases the speed of the iELBA and synchronises it to the engine.

5.7.2.3 Operation

Usually the iELBA operates in the speed range of the engine of 65% to 105% of CMCR in the AHEAD direction.

NOTE: In heavy sea mode the iELBA does not operate.

The engine can also operate if one or the two balancers do not operate (eg in manual mode or if a balancer is defective). Then it is possible that there are more vibrations on the hull.

When the power for the iELBA is set to ON, it takes some seconds to complete the initialisation of the system.

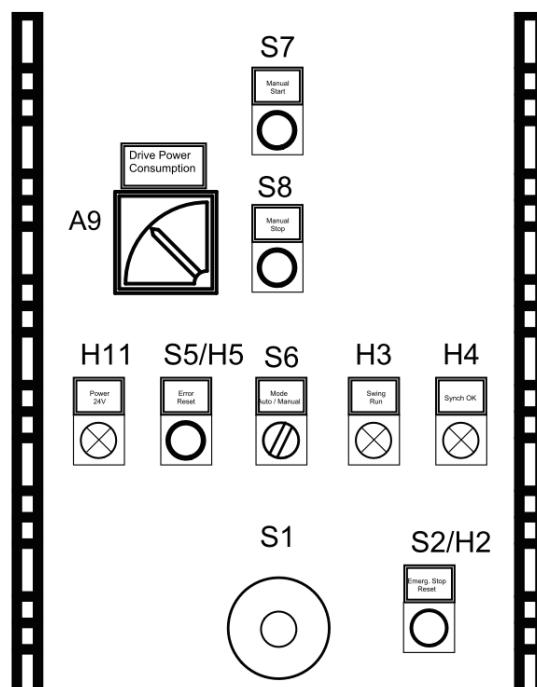
The iELBA operates independently of the engine control system (ECS). The iELBA can be operated in automatic mode or manual mode:

- **Automatic mode**

In automatic mode the balancers operate as follows:

- The iELBA starts if the engine speed is higher than the specified threshold value.
- The iELBA stops if the engine speed is lower than the specified threshold value.

- **Manual mode**


In manual mode the balancers operate at a specified speed. Use the manual mode for troubleshooting only.

NOTE: Use the manual mode only if system oil is available at correct pressure and flow rate.

5.7.2.4 Control cabinet

Figure 5-39 shows the buttons and indications on the control cabinet of the iELBA.

Fig 5-39 iELBA - control cabinet

Tab 5-1 iELBA - control cabinet

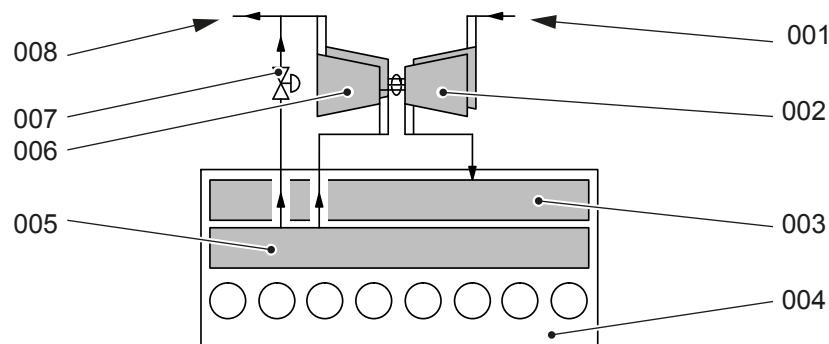
Item	Function	Effect
A9	Drive Power Consumption indication	Shows the electric motor current (in Ampere)
S7	Manual Start button	Starts the iELBA (in manual mode)
S8	Manual Stop button	Stops the iELBA (in manual mode)
H11	Power 24V indicator light	Shows if electric power is on
S5/H5	Error reset button	Shows and resets iELBA errors, refer to Table 5-2 - iELBA - error indication NOTE: If an error occurs, the indicator light shows the related number of flashes. NOTE: Only reset an error after you have done the related procedures.
S6	Mode Auto / Manual switch	Changes between automatic and manual mode
H3	Swing / Run indicator light	Shows the state of the running iELBA: <ul style="list-style-type: none"> Lamp blinks - iELBA is in swing state Lamp is steady - iELBA is in run state
H4	Synch OK indicator light	Shows the synchronisation state of the iELBA: <ul style="list-style-type: none"> Lamp is steady - iELBA is synchronised to the engine Lamp blinks slowly - iELBA is +/-15° from engine synchronisation Lamp blinks quickly - iELBA is +/-30° from engine synchronisation
S1	Emergency stop button	Stops the iELBA immediately
S2/H2	Emerg. Stop Reset button	Resets an emergency stop to enable iELBA restart The integrated indicator light shows as follows: <ul style="list-style-type: none"> Lamp is on - an emergency stop is active Lamp is off - usual operation
A10	Hour indication	Shows the running hours of the electric motor NOTE: A10 is installed in the control cabinet.

[Table 5-2 - iELBA - error indication](#) shows the possible iELBA error indications related to the number of flashes of the indicator light.

NOTE: The error indications are active in automatic mode and in manual mode.

Tab 5-2 iELBA - error indication

Number of flashes	Status	iELBA state
1	Start OK, "Boost to Control Speed Threshold" not OK	OFF
2	Start OK, "Setpoint Speed" not OK in 60 s	OFF
3	Start OK, speed OK, "Phase Synchronisation" not OK in 60 s	OFF
4	Overspeed error	OFF
5	Electric motor error	OFF
6	The lubricating oil pressure is too low	OFF
7	iELBA pickup sensor error	OFF
8	TDC pickup sensor error	Usual operation
9	BDC pickup sensor error	Usual operation


5.8 Group 8 - Pipes

5.8.1 Exhaust waste gate

The optional exhaust waste gate is a by-pass pipe to the turbine (006, [Figure 5-40](#)) of the turbochargers. The valve (007) in this pipe controls the flow of exhaust gas through the turbines (006). This controls the compressor (002) of the turbochargers and thus the supply of scavenge air to the scavenge air receiver (003).

During usual operation the valve (007) is closed and thus all the exhaust gas flows through the turbines (006).

Fig 5-40 Exhaust waste gate (generic)

Legend

001	Air inlet	005	Exhaust gas manifold
002	Compressor	006	Turbine
003	Scavenge air receiver	007	Valve
004	Engine	008	Exhaust gas outlet

If the turbochargers deliver too much scavenge air pressure, the ECS opens the valve (007). If the valve (007) is controllable, the ECS opens it as much as necessary. This decreases the performance of the turbochargers and thus the pressure of the scavenge air.

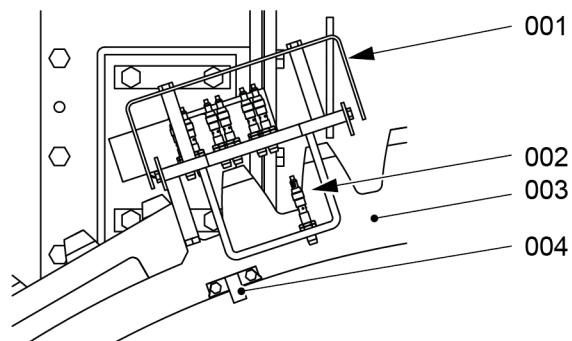
If the valve (007) is blocked in the open position, you have to close the exhaust waste gate, refer to section [10.15 Temporary isolate the exhaust waste gate](#).

Page left intentionally blank

5.9 **Group 9 - Monitoring instruments**

5.9.1 **Crank angle sensor unit**

The crank angle sensor unit is installed on the supply unit drive at the driving end.


There are two crank angle systems that monitor the teeth on the intermediate wheel. The two sets of proximity sensors operate independently to sense the teeth on the intermediate wheel (002).

Two more proximity sensors (002, [Figure 5-41](#)) are used to find the crank angle marks (004) for TDC and BDC on the flywheel (003).

All proximity sensors are connected as follows:

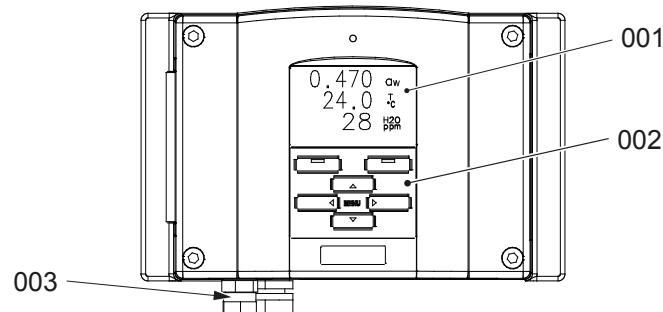
- First sensor pair to MCM-20 and CCM-20#1
- Second sensor pair from CCM-20#2 to CCM-20#n
- TDC and BDC to all CCM-20

Fig 5-41 Crank angle sensor unit on flywheel (example)

Legend

001 Cover
002 Proximity sensor

003 Flywheel
004 Crank angle mark


5.9.2 Water in oil monitor

The optional water in oil monitor continuously monitors the concentration of water in the oil supply pipe. The water in oil monitor continuously sends a signal to the alarm and monitoring system (AMS).

On the display (001, [Figure 5-42](#)) you can see the data that follow:

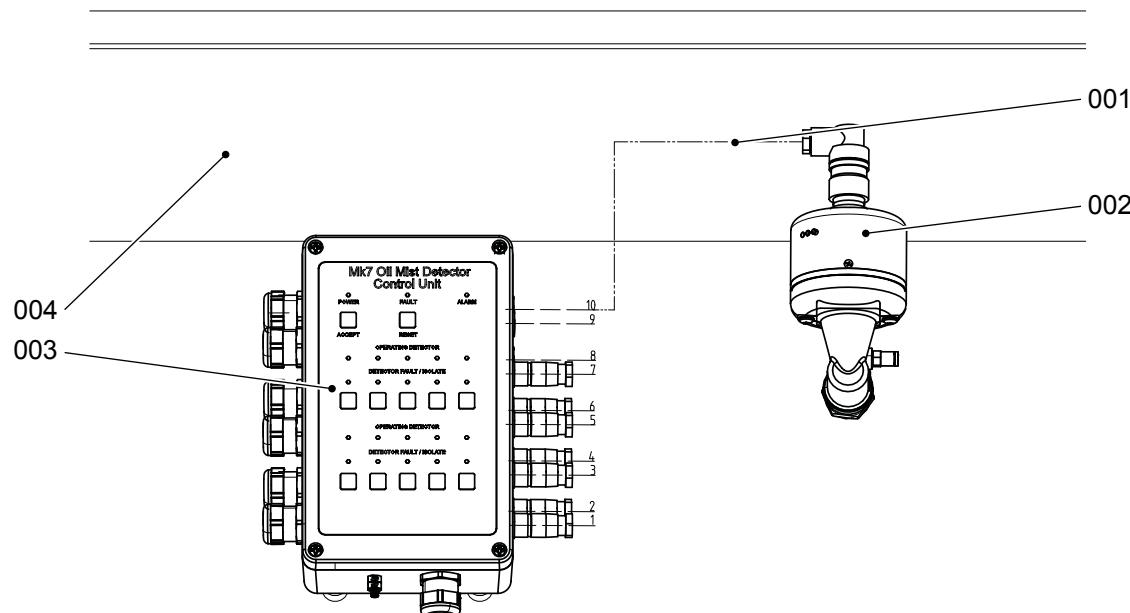
- aw - water activity
- T - temperature in °C
- H₂O - water content in ppm

Fig 5-42 Water in oil monitor (generic)

Legend

001 Display
002 Keypad

003 Connection points

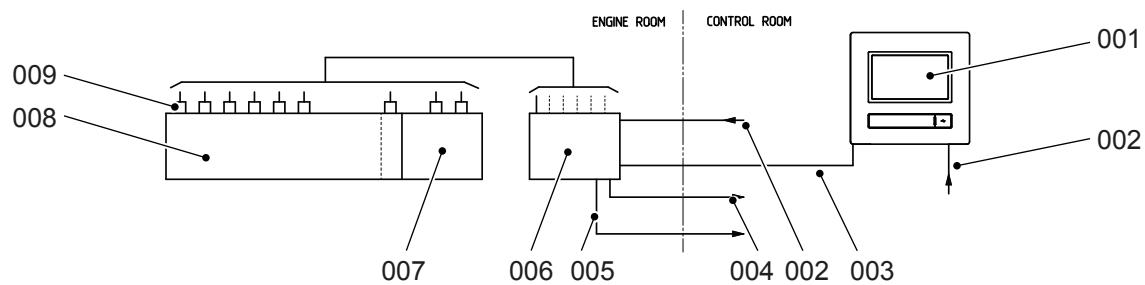

Page left intentionally blank

5.9.3 Oil mist detector

The oil mist detection system continuously monitors the concentration of oil mist in the crankcase, in the supply unit drive and in the supply unit. If there is a high oil mist concentration, the oil mist detector activates an alarm. Thus damage to the bearings can be quickly found and explosions in the crankcase can be prevented.

The system includes the sensors (002, [Figure 5-43](#)) and the control unit (003) on the engine.

Fig 5-43 Oil mist detector (example)



Legend

001 Data cable
002 Sensor

003 Control unit E15.1
004 Column

Each sensor monitors the concentration of oil mist. Each sensor has a self-test function to make sure that there are no internal faults.

Fig 5-44 Oil mist detector - schematic diagram (example)**Legend**

001	Control panel	006	Control unit E15.1
002	Power supply	007	Supply unit
003	Data cable	008	Crankcase and gear box
004	To alarm system	009	Sensor
005	To safety system		

Data communication is between the control unit (006, [Figure 5-44](#)) and the control panel (001).

The adjustments can be programmed in the display unit (001). The menu-driven software has three user levels:

- User - Read-only of data
- Operator - Password-protected level for access to most adjustments and functions
- Service - Password-protected level for authorized staff of the manufacturer and service personnel.

NOTE: Instructions that relate to adjustments, commissioning, troubleshooting, and maintenance are given in the related documentation of the manufacturer.

Page left intentionally blank

6 Control system

6.1	Engine control system UNIC.....	244
6.2	Local display unit (LDU-20) - general.....	250
6.3	Operate the local display unit (LDU-20).....	252
6.4	Intelligent combustion control.....	258
6.5	Integrated gas pressure regulation.....	262
6.6	Gas valve unit and external gas supply system.....	266
6.7	Local display unit (LDU-20) - pages	
6.7.1	LDU-20 pages - general for DF engine.....	272
6.7.2	LDU-20 page - MAIN.....	274
6.7.3	LDU-20 page - CONTROL LOCATIONS.....	278
6.7.4	LDU-20 page - FUEL MODE CONTROL.....	280
6.7.5	LDU-20 page - CA SENSOR STATUS.....	282
6.7.6	LDU-20 page - CYLINDER BALANCING DIESEL.....	284
6.7.7	LDU-20 page - CYLINDER BALANCING GAS.....	286
6.7.8	LDU-20 page - CYLINDER LUBRICATION.....	288
6.7.9	LDU-20 page - iCAT.....	290
6.7.10	LDU-20 page - DYNAMIC COMBUSTION CONTROL (DCC).....	294
6.7.11	LDU-20 page - EXHAUST VENTILATION.....	296
6.7.12	LDU-20 page - EXHAUST VALVES.....	298
6.7.13	LDU-20 page - FAILURE LIST.....	300
6.7.14	LDU-20 page - FAILURE SIMULATION.....	302
6.7.15	LDU-20 page - FUEL SHARING (if applicable).....	304
6.7.16	LDU-20 page - FUEL SYSTEM.....	306
6.7.17	LDU-20 page - GAS PRESSURE.....	308
6.7.18	LDU-20 page - GAS LEAK TEST.....	310
6.7.19	LDU-20 page - GAS ADMISSION VALVES.....	312
6.7.20	LDU-20 page - GAV MANUAL VALVE TEST.....	314
6.7.21	LDU-20 page - GVU & VALVE TEST.....	316
6.7.22	LDU-20 page - KNOCK CONTROL.....	318
6.7.23	LDU-20 page - LOG MESSAGES.....	320
6.7.24	LDU-20 page - MAIN FUEL INJECTION.....	322
6.7.25	LDU-20 page - PAGE INDEX.....	324
6.7.26	LDU-20 page - PERFORMANCE DATA DIESEL.....	326
6.7.27	LDU-20 page - PERFORMANCE DATA GAS.....	328
6.7.28	LDU-20 page - PILOT FUEL INJECTION.....	330
6.7.29	LDU-20 page - PILOT FUEL PRESSURE.....	332
6.7.30	LDU-20 page - SCAVENGE AIR - EWG (optional).....	334
6.7.31	LDU-20 page - SCREENSHOT.....	336
6.7.32	LDU-20 page - SOFTWARE INFO.....	338
6.7.33	LDU-20 page - IMO CRC INFO.....	340

Operation Manual

6.7.34	LDU-20 page - SOFTWARE TOOLS.....	342
6.7.35	LDU-20 page - SYSTEM STATUS.....	344
6.7.36	LDU-20 page - SYSTEM SETTINGS.....	346
6.7.37	LDU-20 page - TEMPERATURES.....	348
6.7.38	LDU-20 page - USER PARAMETERS.....	350
6.7.39	LDU-20 page - LOG ENTRY DATA.....	352
6.7.40	LDU-20 page - DATE.....	354
6.7.41	LDU-20 page - ETHERNET.....	356

Page left intentionally blank

6.1 Engine control system UNIC

6.1.1 Engine control system

The engine control system (ECS) is an embedded system that has a modular design. Some parts and functions in the ECS system configuration are optional and are related to the application.

The name of the WinGD engine control system is UNIfied Controls Flex (UNIC-flex). It has the items that follow:

- **Main control module (MCM-11)**

The main control module (MCM-11) is installed at the local maneuvering stand in the terminal box E25. The MCM-11 has functions for speed control, engine control and common engine functions (eg starting air shut-off valve). External control systems transmit data to the MCM-11.

- **Local display unit (LDU-20)**

One local display unit (LDU-20) is installed at the local maneuvering stand at the free end. The other LDU-20 is installed in the engine control room (ECR). External control systems transmit data to the LDU-20. The LDU-20 gives the operator a graphical user interface for access to data and system adjustments.

- **Input/output module (IOM-10)**

The input/output module (IOM-10) is installed at the rail unit in the terminal box E90. The IOM-10 has the engine control functions (eg exhaust waste gate control) and redundant sensor and actuator signals of the MCM-11.

- **Cylinder control module (CCM-20)**

The cylinder control modules (CCM-20) for each cylinder are installed on the rail unit in the terminal box E95. The CCM-20 have different cylinder-related and engine-related control functions. The CCM-20 also have redundant global functions for the engine control.

Redundant CAN system buses connect all these modules.

Two 230 VAC supplies from the ship installation, supply electrical power to E85.1 to E85.n. The two 230 VAC supplies are isolated from each other.

The power supplies have redundancy. If it is necessary to isolate the ECS, make sure that each of the two 230 VAC power supplies are set to off. This will prevent injury to personnel.

Each control function that is important for engine operation has redundancy in the ECS.

Fig 6-1 ECS modules

00214

Legend

001 Input output module (IOM-10)
 002 Main control module (MCM-11)

003 Cylinder control module (CCM-20)
 004 Local display unit (LDU-20)

6.1.2 Functions of the engine control system

The main functions of the engine control system are as follows:

- Starting valve control
- Servo oil pressure control
- Exhaust valve control
- Cylinder lubricating control
- Engine speed and crank angle sensor monitoring
- Diesel fuel pressure control
- Diesel fuel injection control
- For a DF engine, also gas injection control

6.1.3 External control systems

The Diesel Engine Control and Optimizing Specification (DENIS) and the engine control system (ECS) are designed so that different remote controls can be used. All nodes are fully specified. The terminal boxes are installed on the engine, to which the cable ends from the control room or from the bridge can be connected.

The engine control has all the parts necessary to operate and monitor the engine, and for the safety of the engine.

The ECS supplies the data communications to:

- The propulsion control system (PCS)
- The alarm and monitoring system (AMS).

The standard version of ECS includes the external communications that follow:

- Two redundant CANBus lines to the PCS (one CANBus connection to MCM-11 and one connection to the LDU-20 in the terminal box E25)
- Two redundant Modbus lines to the AMS (one Modbus connection to MCM-11 and one connection to the LDU-20 in the terminal box E25).

For the signal flow, refer to [Figure 6-2](#).

For the schematic diagrams, refer to section [13.1 Schematic diagrams - general](#).

NOTE: The communications between the systems can be different. See the related documentation from the approved propulsion control system manufacturer.

6.1.3.1 Propulsion control system

The propulsion control system (PCS) has the subsystems that follow:

- **Remote control system**

The remote control system (RCS) has the primary functions that follow:

- Start, stop and reverse
- Automatic slow turning

Data about the ECS status is available in the RCS. This includes measured values of sensors, defects and other indications (refer to the documentation of the remote control manufacturer).

All commands to operate the engine (eg AHEAD or ASTERN) come from the RCS.

- **Engine safety system**

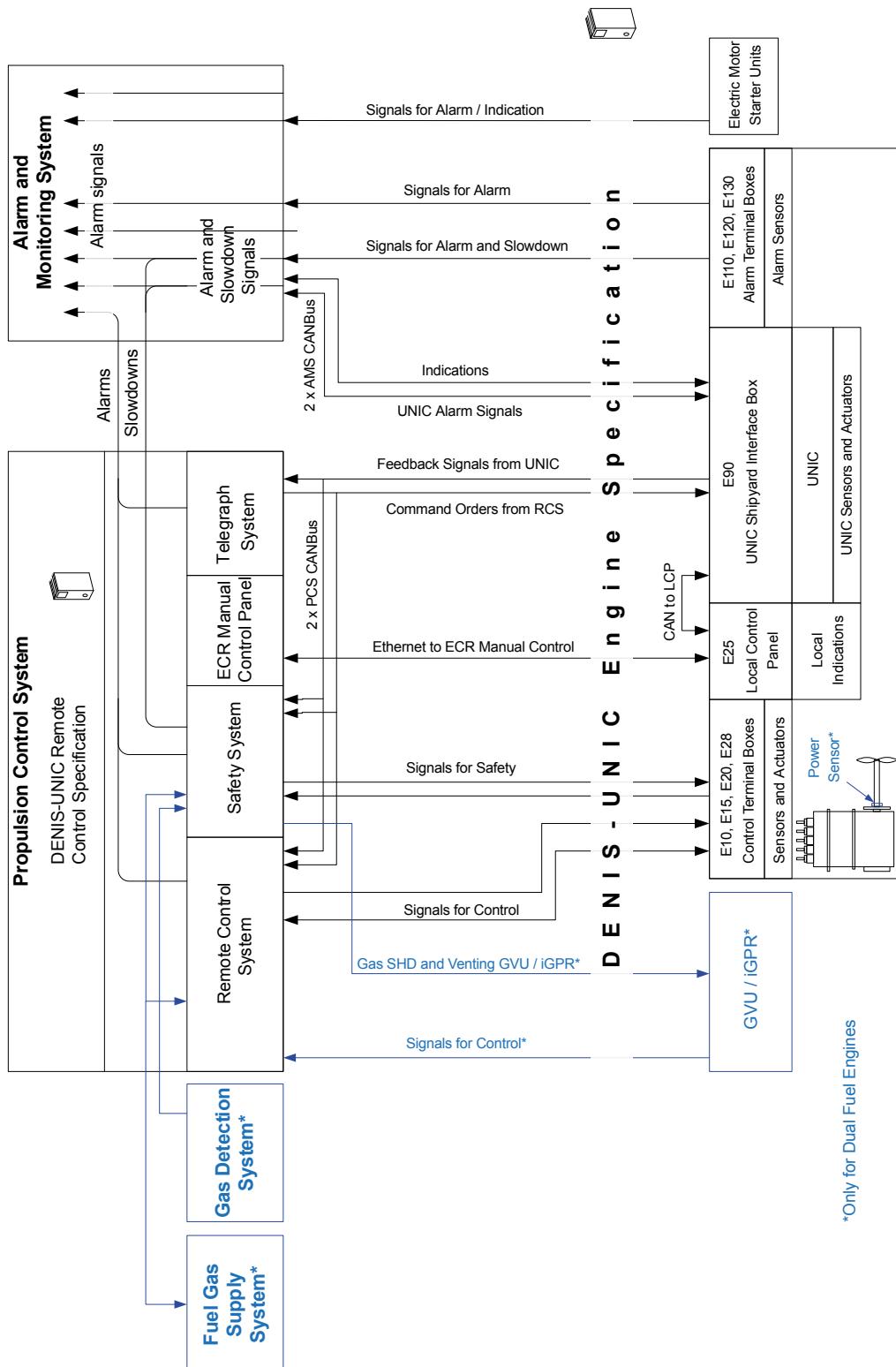
The engine safety system (ESS) has the primary functions that follow:

- Emergency stop
- Overspeed protection
- Automatic shutdown
- Automatic slowdown

- **Telegraph system**

The telegraph system transmits maneuvering signals from the bridge to the ECR and local control panel.

NOTE: The ESS and telegraph system operate independently and are also fully serviceable if the RCS is defective.


6.1.3.2 Alarm and monitoring system

The alarm and monitoring system (AMS) is an external system and monitors the engine. The AMS gives the operator alarms and status data of the engine to make sure of safe and satisfactory engine operation.

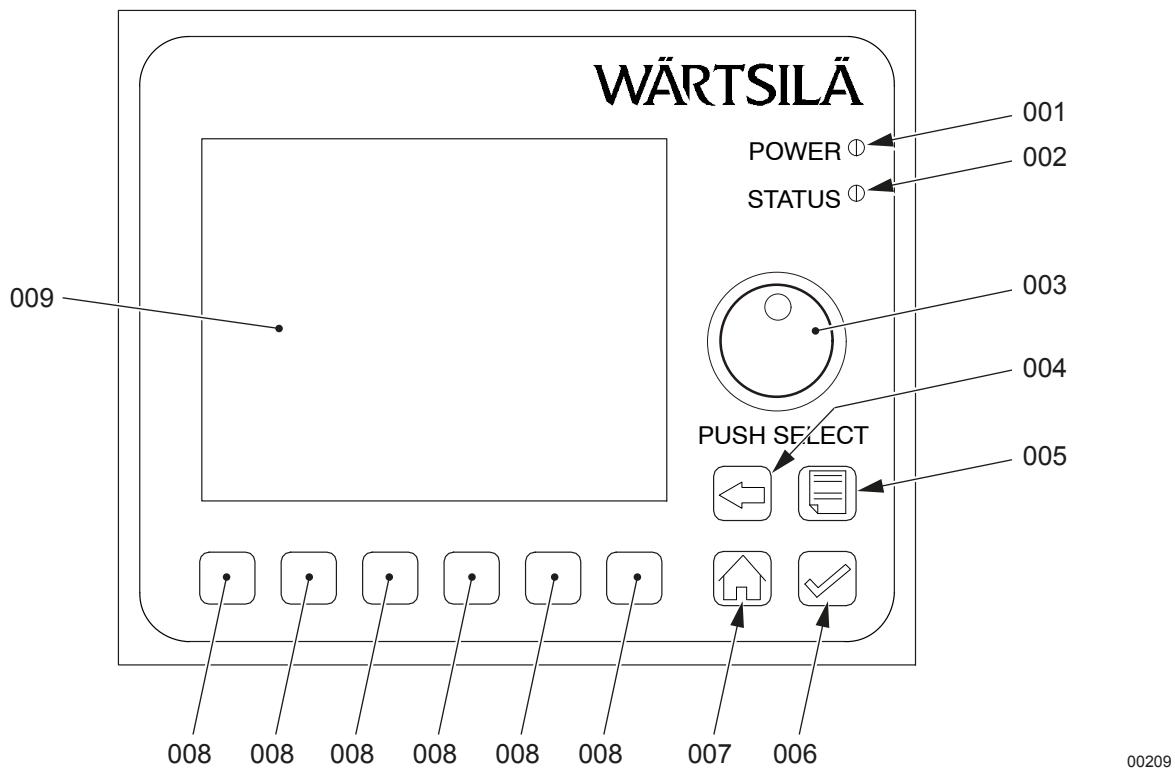
The functions of the AMS are specified in the diesel engine control and optimizing specification (DENIS). The AMS sends signals to the engine safety system to slow down or shut down the engine.

For more data, see the documentation of the AMS manufacturer.

Fig 6-2 Signal flow diagram

*Only for Dual Fuel Engines

Page left intentionally blank


6.2 Local display unit (LDU-20) - general

6.2.1 Local display unit (LDU-20)

The LDU-20 (Figure 6-3) is a multi-purpose module that has an LCD color display (009), ten multi-function buttons (004 to 008) and a rotary button (003).

The number of LDU-20 installed on the engine is related to the engine control system (ECS) and to other optional systems.

Fig 6-3 LDU-20 - overview

Legend

001	Power LED	006	CHECK button (used to accept the action or enter data)
002	Status LED	007	HOME button (push to show the main page)
003	Rotary button (16 steps in one turn, push to select)	008	Multi-function buttons (function is shown on the display)
004	BACK button (used to cancel the action or delete data)	009	Color display
005	Failure LIST button (push to show the failure list)		

6.2.2 Color display

The color display (009) of the LDU-20 shows different pages for each application. After boot-up, or when you push the HOME button, the MAIN page is shown.

Some elements are shown on all pages as follows:

- In the top right-hand corner, the system time is shown above the title bar.
- Below the system time, Local or ECR is shown. If the LDU-20 is the active control location, the indication In Control is shown.
- The bottom of the color display has some space to show the function of the multi-function buttons.

The color display has the general items that follow, refer to [Figure 6-4](#):

- An orange arrow (001) shows the active item.
- A 3D-rectangle (002) indicates a command button.
- An orange frame (003) indicates the edit mode.
- A black dotted frame (004) around an item shows the position of the cursor.
- A white background (005) shows a parameter, which the operator can adjust.
- A grey background (006) shows a parameter, which the operator cannot adjust.

Fig 6-4 LDU-20 color display - general items

Legend

001	Orange arrow	004	Black dotted frame
002	3D-rectangle	005	White background
003	Orange frame	006	Grey background

For the procedures how to use the LDU-20, eg change a LDU-20 page, refer to section [6.3 Operate the local display unit \(LDU-20\)](#).

6.3 Operate the local display unit (LDU-20)

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
--	---------------

Duration for performing the procedure	0.5 man-hours
---------------------------------------	---------------

Duration for performing the requirements after job completion	0.0 man-hours
---	---------------

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

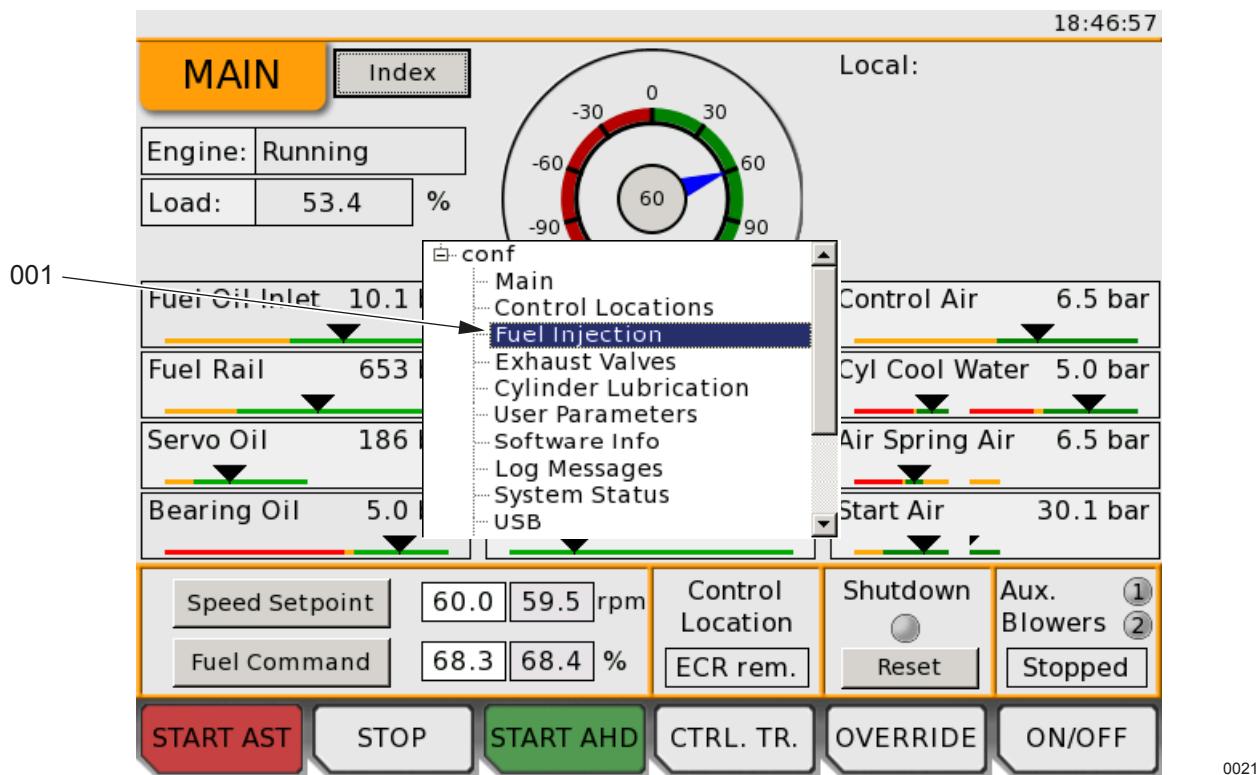
Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS


- None

PRELIMINARY OPERATIONS

- The engine control system must be set to on.

PROCEDURE

Fig 6-5 LDU-20 - navigation menu

- 1 To change between LDU-20 pages, do the steps that follow:
 - 1.1 Push and hold the rotary button for three seconds to show the page navigation menu (001, [Figure 6-5](#)).
 - 1.2 Turn the rotary button to select a page:
 - To select an item below, turn the rotary button clockwise.
 - To select an item before, turn the rotary button counterclockwise.

NOTE: As an alternative you can use the Index button to change between LDU-20 pages.
 - 1.3 Push the rotary button to change to the selected page and to close the navigation menu.
- 2 To edit a selected item on a LDU-20 page, do the steps that follow:

NOTE: Values and settings that the operator can change are shown with a white background.

 - 2.1 Use the rotary button to select the item.

NOTE: While in edit mode, the text field has an orange frame.
 - 2.2 Push and turn the rotary button.
 - To increase the value, turn the rotary button clockwise.
 - To decrease the value, turn the rotary button counterclockwise.
 - 2.3 Push the rotary button to apply the change.

- 3 To operate the engine from the MAIN page, do the steps that follow:
NOTE: The changes have an immediate effect on the engine.
 - 3.1 Make sure that the LDU-20 is the active control location. If necessary, select the CTRL.TR button to transfer control.
 - 3.2 To change modes, move the cursor on the related button then push the rotary button.
NOTE: The indicator (orange triangle) shows the control mode of the LDU-20 (speed mode or fuel command mode).
NOTE: If the MCM-11 becomes defective, a fuel command mode is selected automatically.
NOTE: While in edit mode, the text field has an orange frame. Turn the rotary button to adjust the set point (turn clockwise to increase, counterclockwise to decrease).
 - 3.3 To adjust the speed or fuel command setpoint, move the cursor to the related field then push the rotary button to enter the edit mode.
 - 3.4 To go out of the editing mode, push the rotary button again.
- 4 To change the LDU-20 control location from the CONTROL LOC. page, do the steps that follow:
 - 4.1 Push the CTRL. TR. button to accept control to the LDU-20 at your location.
 - 4.2 To get / accept control to / from a different location, select the related on-screen button, then push the CHECK button.
- 5 To adjust the fuel injection parameters from the FUEL INJECTION page, do the steps that follow:
 - 5.1 Turn the rotary button to move the cursor to the related text field.
 - 5.2 Push the rotary button to enter the edit mode.
 - 5.3 Turn the rotary button to adjust the value (turn clockwise to increase, or counterclockwise to decrease).
 - 5.4 Push the rotary button again to go out of the edit mode.

WARNING

After an air run, the crankshaft can turn suddenly when the pressurized air in the cylinder releases. There is a risk of death, serious injury or damage to components. Before you do maintenance on the engine, engage the turning gear, or start the Crank Angle Determination Algorithm (ADA) a second time:

- Make sure that there is no pressurized air in the cylinder and the starting air pipes
- Make sure that you open the relief valves on all cylinder covers to release the pressure

- 6 To initiate an ADA Start from the CRANK ANGLE page, do the steps that follow:
NOTE: It is possible to perform the ADA procedure with open or closed indicator valves.
NOTE: Do not initiate an ADA start during the normal operation of the vessel. It can lead to damages on the scavenge air flaps in the worst case. Perform an ADA Start only in case of an emergency at sea, for example, after a complete power loss of the engine control system including the back-up battery.
 - 6.1 In the LDU-20, get the USER PARAMETERS page.
 - 6.2 Push the AIR RUN button until the engine status changes from ADA to AIR RUN.

NOTE: It is also satisfactory if each cylinder was activated and has moved automatically at the ADA procedure (independently from the direction in which the engine turns).

NOTE: If the ADA procedure has activated each cylinder but the engine stays in its initial position, release the AIR RUN button. Do [Step 6.4](#) to [Step 6.7](#).

6.3 If the ADA procedure is not successful (ie the absolute crank angle position could not be found), do the steps that follow:

6.4 Open the indicator valves on all cylinders to release the compressed air.

6.5 Make sure that the starting air pressure is sufficient.

6.6 If necessary, use the turning gear to turn the engine to another initial position.

6.7 Do [Step 6.1](#) to [Step 6.2](#) again.

7 To open the exhaust valve for inspections from the EXHAUST VALVE page, do the steps that follow:

7.1 Set to ON the servo oil service pump to get some pressure in the servo oil rail.

7.2 Make sure that the air spring air pressure is sufficient.

7.3 Move the cursor to the related text field.

7.4 Push the rotary button to enter the edit mode.

7.5 Turn the rotary button to adjust the value to ON to open the exhaust valve. Adjust the value to OFF to go back to automatic mode. Push the rotary button again to go out of the edit mode.

7.6 Use the manual exhaust valve operation to manually open and close an exhaust valve after the engine has stopped (This can be used for tests and bleed procedures, for example after maintenance).

7.7 Set to OFF the servo oil service pump.

8 To change the filter settings on the LOG MESSAGES page, do the steps that follow:

8.1 Push the BACK button to put the cursor on the Filters field, then push the rotary button to display the list of available filters, eg All/Safety/Event/Info/Error.

8.2 Use the rotary button to move the cursor up or down in the list of available filters.

8.3 Push the rotary button to select or deselect the filters.

8.4 Push the BACK button two times to move the cursor back to the list of log messages.

8.5 Use the rotary button to scroll the list up or down.

8.6 When the cursor (a blue highlight in the list) is on a selected log message, push the rotary button. This shows a different screen, which has more data about this log entry.

9 To export a screenshot from the LOG ENTRY page, do the steps that follow:

9.1 Connect a USB drive to the USB port on the rear of the LDU-20. Make sure that the USB drive has a compatible data format (FAT32).

9.2 Wait until the USB menu window is displayed on the screen.

9.3 Use the rotary button to move the cursor to the SCREENSHOT button.

9.4 Push the rotary button to take a screenshot of the page.

NOTE: The screenshot will be automatically saved to the USB drive.

9.5 If necessary, send the saved xx.png file to WinGD.

10 To download backup files from the SYSTEM STATUS page, do the steps that follow:

NOTE: The dialog box that is shown gives an option to download, or not to download the backup files to the selected modules.

- 10.1** Use the rotary button (turn and then push) to select the DOWNLOAD button.
- 10.2** Select Yes to start the download backup files procedure.
NOTE: Select NO if you want to cancel the procedure.

- 11 To export all log messages from the SOFTWARE TOOLS page, do the steps that follow:
NOTE: Connect a USB drive to the USB port on the rear of the LDU-20 before you select the EXPORT button.
 - 11.1 Use the rotary button to put the cursor on the Export button.
NOTE: The file name EDL Export YYYYMMDD_hhmmss.wxml will be saved to the USB drive. The timestamp display YYYYMMDD_hhmmss is shown as year/month/day_hours/minutes/seconds. This file has the full system log and can be sent to WinGD for troubleshooting.
 - 11.2 Push the rotary button to select Export.
 - 11.3 When the export is done, disconnect the USB drive from the LDU-20. This prevents an unwanted LDU-20 shutdown because of a too high power consumption.
- 12 To use the partial upgrade wizard from the SOFTWARE TOOLS page, do the steps that follow:
NOTE: You use the partial upgrade wizard to adjust software parameters, which the user does not usually have access. A file from WinGD stored on a USB drive is necessary.
NOTE: Connect the USB drive to the USB port on the back of the LDU-20.
 - 12.1 Use the rotary button to put the cursor on the Start Wizard button.
 - 12.2 Push the rotary button to select Start Wizard.

CLOSE UP

- None

6.4 Intelligent combustion control

The intelligent combustion control (ICC) permanently monitors and automatically controls the combustion process.

The ICC is part of the engine control system (ECS). All ICC modifications of the engine control parameters obey the IMO regulations and are related to the IMO certificate of the vessel.

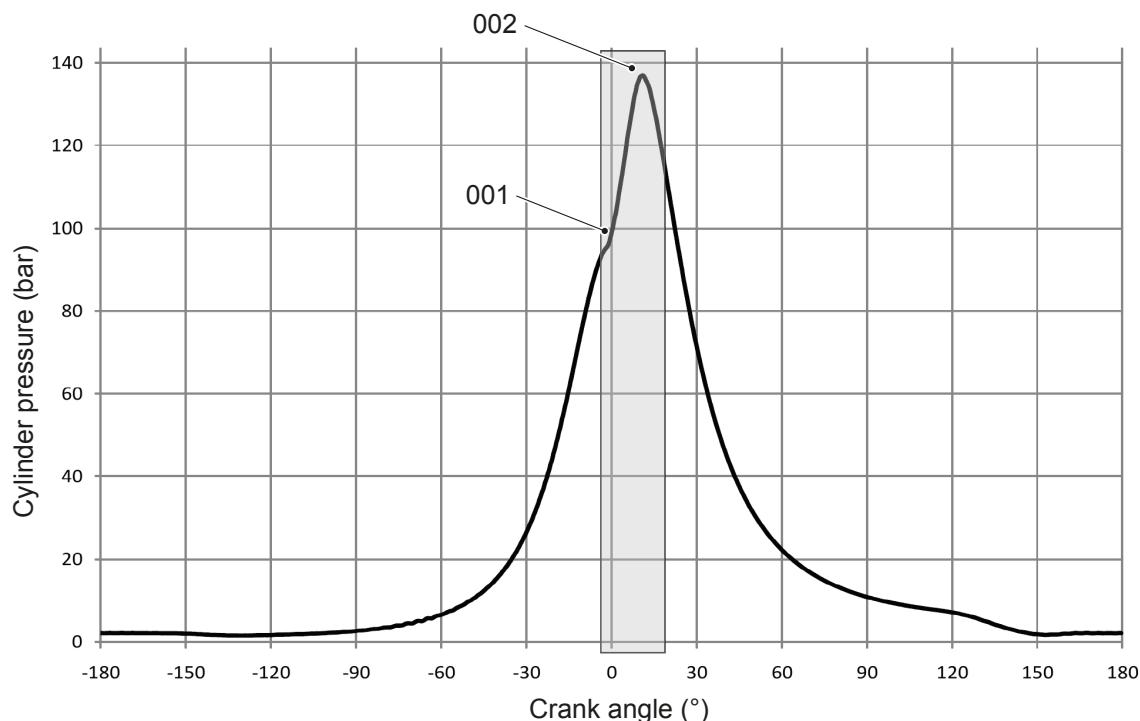
The ICC calculates the best engine control parameters for operation, which balances the compression and firing pressures in the engine (for example injection time offsets and exhaust valve closing time for each cylinder).

- This decreases the excessive wear of engine components.
- This decreases the risk of an engine overload.
- This prevents manual adjustment failures.

In the ECS you can set to OFF or ON each individual function of the ICC system. When all ICC functions are set to OFF, the engine operates in a conventional open-loop control mode.

NOTE: Large differences in the values (for example injection time or exhaust valve operation) for a cylinder is an indication of possible wear or damage of the cylinder. If necessary, replace the defective parts.

6.4.1 Pressure calculation


In the ICC system, the compression pressure of each cycle is calculated with the polynomial formula and the data of the piston position. The ICC uses the values that follow for calculation, refer to [Figure 6-6](#):

- Compression pressure at TDC (p_C)
- Pressure at start of ignition (p_i) (001)
- Maximum firing pressure (p_F) (002).

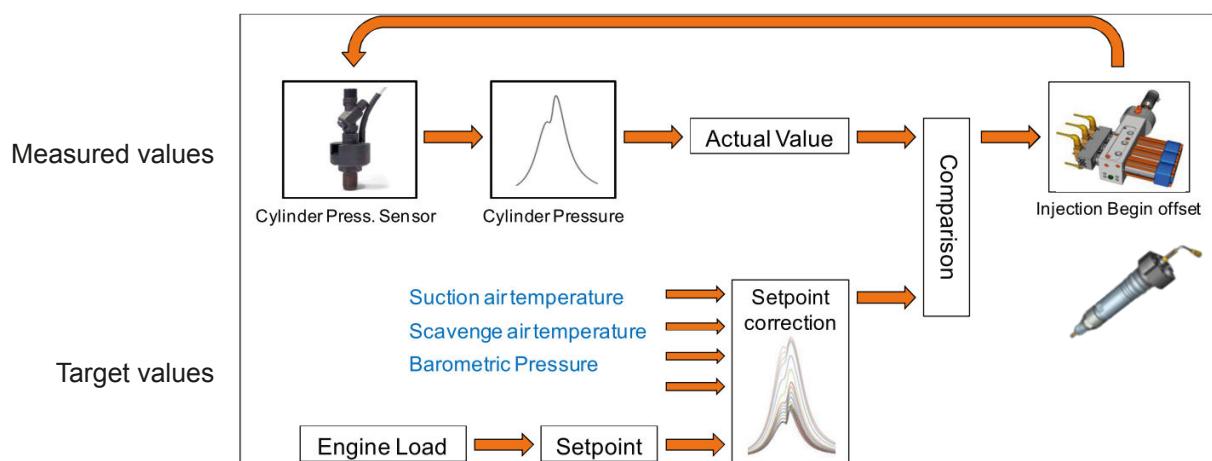
NOTE: If ignition is not exactly at TDC, the pressure at start of ignition p_i is smaller than the compression pressure at TDC p_C .

The pressure increase is the difference between the maximum firing pressure p_F and the pressure at start of ignition p_i . The ICC system sets the limit of this pressure increase related to the shop test results. This prevents mechanical overload to the engine.

Fig 6-6 ICC - pressure diagram

Legend

001 Pressure at start of ignition (p_i)


002 Maximum firing pressure (p_F)

6.4.2 ICC control

A pressure transmitter is installed on each cylinder cover. The cylinder pressure data of each cylinder is taken as an analogue input signal from the pressure transmitter into the ECS.

The ECS filters the signals from the sensors and then transmits these signals to a controller. The measured value is adjusted to the correct setpoint value and is related to the engine load. This real-time site correction and comparison is done for each engine cycle (refer to [Figure 6-7](#)).

Fig 6-7 ICC - control schematic

Page left intentionally blank

6.5 Integrated gas pressure regulation

The integrated gas pressure regulation (iGPR) controls the gas pressure of the gas that is supplied to the engine inlet. The iGPR control system has also other functions as follows:

- It removes contamination of the supplied gas with a gas filter.
- It measures the gas quantity with a flow meter.
- It measures temperature and pressure of the gas.

Fig 6-8 iGPR - schematic diagram

In the chapters that follow you find a short description of the automatic control functions for the iGPR control system.

6.5.1 Transfer to gas operation

If you have to change to gas operation, you have to start the gas mode, refer to section 8.15 [Change-over to and from gas](#).

Then the iGPR control system automatically starts the transfer sequence as follows:

- Starts step 1 (FGSS preparation):
 - Waits for the signal FGSS is ready.
 - NOTE:** All valves are in diesel operation position.
 - Activates the FGSS ready signal from PCS to iGPR.

- Starts step 2 (automatic leakage test):
 - Activates the leakage test active signal from iGPR to PCS and ECS.
 - Pressurizes the iGPR piping.
 - Monitors the pressure drop in the iGPR piping.
 - Activates the leakage test OK signal from iGPR to PCS and ECS.
 - Deactivates the leakage test active signal from iGPR to PCS and ECS.
- Starts step 3 (flushing):
 - Activates the flushing active signal from iGPR to PCS and ECS.
 - Opens the shut-off valve (CV7285C).
 - Closes the vent valve at the engine inlet (CV7289C).
 - Opens the pressure regulating valve (CV7288C).
 - Opens the shut-off valves (CV7291C, CV7292C) and the vent valves (CV7286C, CV7287C).
 - Activates the flushing OK signal from iGPR to PCS and ECS.
 - Deactivates the flushing active signal from iGPR to PCS and ECS.
- Starts step 4 (pressurization and stabilisation):
 - Activates the pressure stabilisation active signal from iGPR to PCS and ECS.
 - Closes the vent valves (CV7286C, CV7287C)
 - Starts the pressurization and stabilisation.
 - Activates the pressure stabilisation OK signal from iGPR to PCS and ECS.
 - Deactivates the pressure stabilisation active signal from iGPR to PCS and ECS.
 - Activates the transfer preparation OK signal from iGPR to PCS and ECS.

NOTE: The ECS uses this signal to start the GAV operation.

NOTE: If one of the transfer preparation steps is not successful, the iGPR control system sends a gas trip signal to the PCS and ECS. Then the iGPR control system changes to degassing state, refer to [Para 6.5.3](#).

6.5.2 Overpressure release state

The iGPR control system automatically starts the steps that follow, if the gas pressure is 0.5 bar above the setpoint value:

- Opens the vent valve (CV7289C) as long as necessary.
- Controls the pressure regulating valve (CV7288C).

6.5.3 Shutdown on gas operation

The iGPR control system automatically starts different steps related to the conditions.

If you manually start a transfer to diesel operation (refer to section [8.15 Change-over to and from gas](#)), or if there is a usual gas trip and the ECS parameter “vent valve active mode” is ON, the iGPR control system automatically starts the steps that follow:

- Closes the shut-off valves (CV7285C, CV7291C, CV7292C).
- Opens the vent valves (CV7289C, CV7286C, CV7287C).
- Opens the pressure regulating valve (CV7288C).

NOTE: The pressure in the engine gas piping decreases to atmospheric pressure.

If there is a usual gas trip and the ECS parameter “vent valve active mode” is OFF, or if there is a gas trip with automatic inerting request, or if there is an engine shutdown, the iGPR control system automatically starts the steps that follow:

- Closes the shut-off valves (CV7285C, CV7291C, CV7292C).
- Opens the vent valves (CV7289C, CV7286C, CV7287C).
- Opens the pressure regulating valve (CV7288C).
- Closes the master shut-off valve of the FGSS (controlled by PCS).
- Opens the vent valve of the FGSS (controlled by PCS).

NOTE: The pressure in the engine gas piping and in the iGPR decreases to atmospheric pressure (degassing state).

- If there is a gas trip with automatic inerting request, the iGPR control system starts the automatic inerting sequence, refer to [Para 6.5.5](#).

6.5.4 Gas trip with automatic inerting

A gas trip with automatic inerting is necessary in the conditions that follow:

- Emergency gas trip switches are active
- Gas trip from gas detection system is active
- Incorrect gas inlet conditions
- Ventilation failure of the double wall pipes.

In these conditions the iGPR control system automatically starts the steps that follow:

- Closes the master shut-off valve of the FGSS.
- Opens the vent valve of the FGSS.
- Closes the shut-off valves (CV7285C, CV7291C, CV7292C).
- Opens the vent valves (CV7289C, CV7286C, CV7287C).
- Opens the pressure regulating valve (CV7288C).

NOTE: The pressure in the engine gas piping and in the iGPR decreases to atmospheric pressure.

The automatic inerting sequence then starts, refer to [Para 6.5.5](#).

6.5.5 Automatic inerting sequence

The automatic inerting sequence has the steps that follow:

- The engine safety system (ESS) sends a signal to the iGPR control system.
- The iGPR control system opens the inert valve in the FGSS.
- Inert gas flows through the pipes from the inert valve in the FGSS to the inert gas release outlet of the engine.
- The inert valve in the FGSS closes again after 25 seconds, when the pipes are filled with inert gas.
- If the inerting sequence was successful, the iGPR control system activates the inerting completed signal from iGPR to PCS.

- If the inerting sequence was not successful, the iGPR control system activates the inerting failed signal from iGPR to PCS.

6.5.6 Engine maintenance

If you have to do maintenance on the engine or on the iGPR or on the supply line, you have to start the related maintenance mode, refer to section [8.22 Prepare the engine for standstill or for maintenance](#).

Then the iGPR control system automatically starts the inerting sequence, refer to [Para 6.5.5](#).

6.6 Gas valve unit and external gas supply system

6.6.1 External gas supply

The external gas supply system upstream of the gas valve unit (GVU) contains the gas supply pipes and the pressurized gas supply.

NOTE: Your gas valve units can look different.

NOTE: Your engine could have iGPR instead of GVU. In that case, refer to the chapter: Integrated gas pressure regulation.

6.6.2 Gas supply pipes

The gas supply pipes between the gas storage area and the engine room are in a closed area. The supply pipes have double walls or are installed in a closed, ventilated duct. This duct has a gas detector to detect the gas and monitor the gas flow.

6.6.3 Shut-off valve

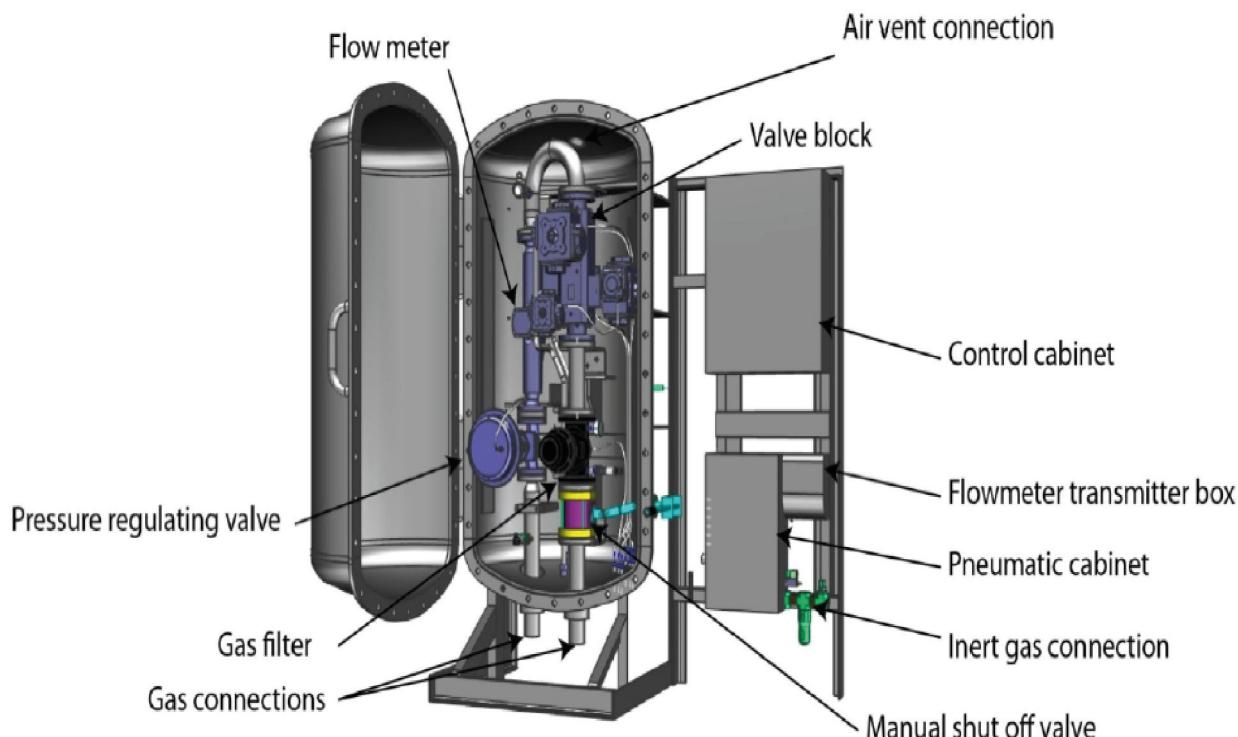
The propulsion control system (PCS) controls the shut-off valve. During usual operation, the shut-off valve for the GVU shuts-off the gas supply to the engine room. The shut-off valve can be closed from the engine room, the engine control room or the bridge. In some conditions, the shut-off valve is automatically closed.

6.6.4 Gas valve unit (GVU)

It is necessary for dual fuel engines to have accurate control of the gas pressure and the changes of the load conditions.

The GVU has three primary functions:

- 1 Gas pressure control
 - a The gas pressure depends on the engine load.
 - b The signal for the applicable gas pressure comes from the Engine Control System.
- 2 Leak test sequence
 - a The leak test sequence is done before the engine changes from diesel to gas mode.
 - b The leak test sequence makes sure that the valves of the GVU operate correctly and that there is no internal leakage.
- 3 Inert gas function
 - a The GVU uses inert gas and runs pressure release sequences automatically.
 - b The pressure release sequence is safe during usual operation.


Your GVU is one of these two variants:

- 1 GVU-ED (Enclosed Design see)
- 2 GVU-OD (Open Design see)

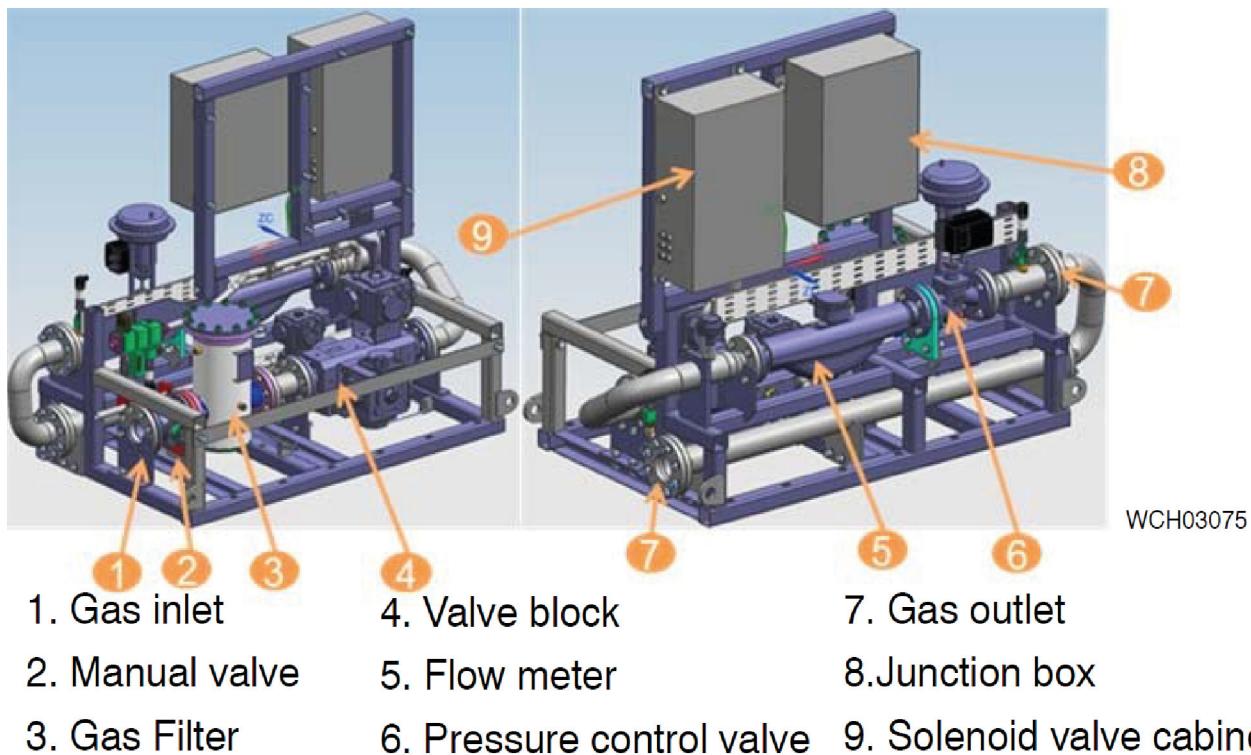
6.6.4.1 GVU-ED

This closed design [Figure 6-9](#) has pipes with double walls installed in a gas-tight area. This gas-tight area has continuous and sufficient airflow. This design can be safely installed in engine rooms. There is no danger of gas release. The design is in proportion to the bore dimensions of your engine and your cylinder configuration.

Fig 6-9 **GVU-ED**

The air vent connects to an extractor fan to move air from the gas-tight area. The dimensions of the extractor fan are sufficient to replace the necessary volume of air in the gas-tight area and the double wall pipes. The extractor fan keeps a constant negative pressure in the gas-tight area. This negative pressure is monitored.

To make sure that the airflow is sufficient, the ventilation system of the GVU-ED must operate independently from all other ventilation systems.

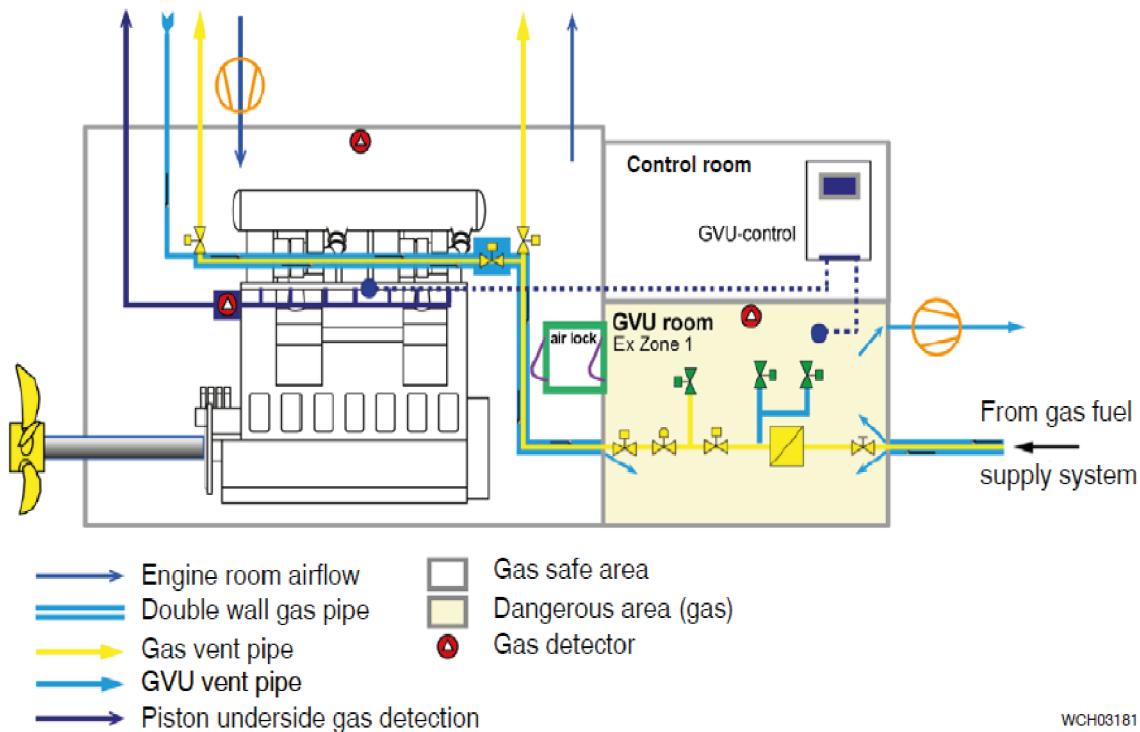

Gas detectors constantly monitor the double wall pipes and the GVU for concentrations of gas. If gas is found, the safety system activates a mode change to diesel operation. The gas pressure is released and inert gas flows inside the pipes.

The GVU-ED has an integrated control panel.

6.6.4.2 GVU-OD

This open design [Figure 6-10](#) does not have a closed area or pipes with double walls. This design is installed externally in an isolated room with sufficient airflow like for example a gas valve room. The design is in proportion to the bore dimensions of your engine and your cylinder configuration.

Fig 6-10 GVU-OD



The isolated room [Figure 6-11](#) is gas-tight and follows these standards:

- 1 All electrical equipment follows the standards in the ATEX Directives (Equipment for potentially explosive atmospheres)
- 2 An ATEX approved airlock of sufficient dimensions for one person is installed at the entrance of the GVU room.
- 3 Large ATEX approved fans with redundancy are installed. These fans keep sufficient negative pressure in the GVU room. The air in the GVU room and the air in the pipes are replaced 30 times per hour.
- 4 The gas pipes between the GVU room and the engine have double walls.
- 5 The maximum GVU room capacity for pressurized gas must be calculated.
- 6 The maximum GVU room pressure resistance must be calculated.
- 7 The ventilation system of the GVU-OD operates independently from all other ventilation systems.

For the GVU-OD, the control panel is installed outside of it.

Fig 6-11 GVU-OD: Schematic Diagram for Installation

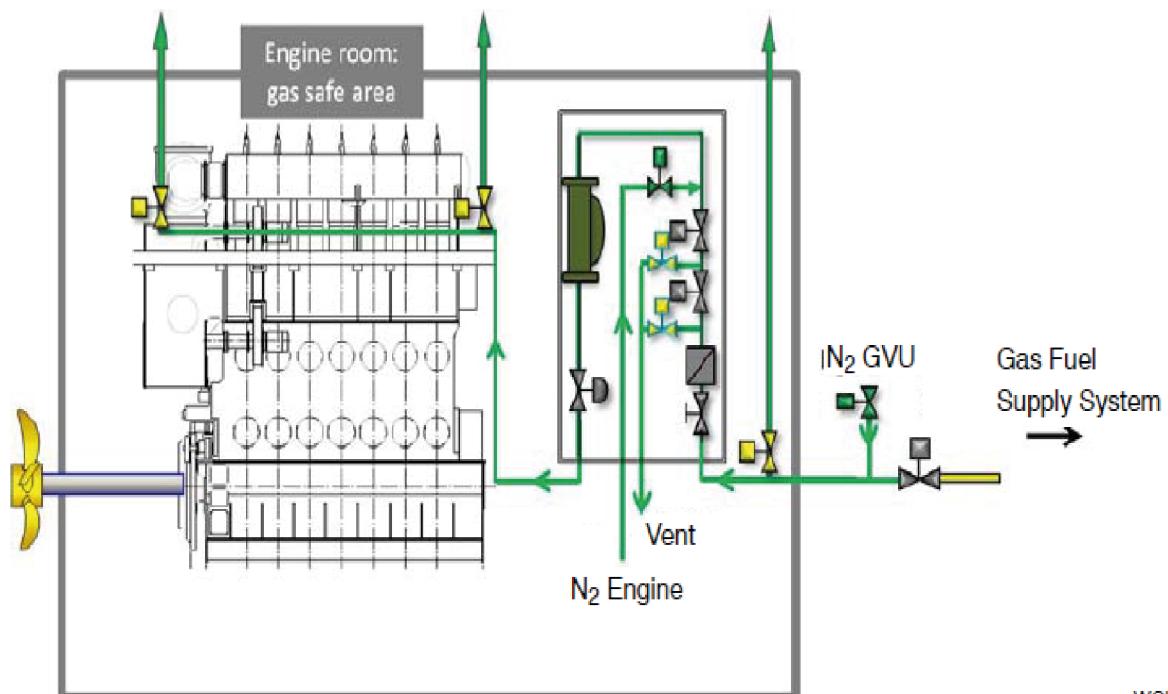
6.6.5 GVU control panel

The control system controls all functions of the GVU. The control system sends a signal to the solenoids that control pneumatically activated valves. A human machine interface (HMI) is installed on the GVU control panel [Figure 6-12](#). With the GVU Control Panel, you can monitor:

- 1 The status of the GVU.
- 2 The valve positions.
- 3 The data that comes from the sensors.
- 4 Possible alarms.

NOTE: The GVU control panel does not obey the ATEX standards and is installed in a different room.

Fig 6-12 GVU Control Panel


6.6.6 Purging the fuel gas pipes (Inerting)

Use inert gas like nitrogen to replace the fuel gas in the fuel gas pipes. This process makes sure that there is no gas leakage into the engine room and removes possible dangers.

If fuel gas is found in the GVU or between the annular space of the double wall pipes, then the safety system automatically changes from gas mode to diesel mode. In addition, a valve (N2 Engine in [Figure 6-13](#)) opens automatically and lets pressurized inert gas flows into the fuel gas pipes and through the open vent valves. This calibrated sequence replaces the volume in the fuel gas pipes at least three times. This guarantees the removal of residual gas in the system.

Before maintenance on the engine or the GVU, it is necessary to purge the fuel gas pipes to do the gas removal procedure. This will make sure that fuel gas does not flow into the engine room. One more N2 valve is installed upstream of the GVU. This valve is for the removal of fuel gas in the GVU. The operators do this procedure manually. For the pipes directly on the engine, the procedure is the same.

For the detailed procedure, refer to the documentation of the GVU manufacturer.

Fig 6-13 Fuel gas removal from the fuel gas pipes: Schematic Diagram

6.7 Local display unit (LDU-20) - pages

6.7.1 LDU-20 pages - general for DF engine


In the chapters that follow you can find a description of the LDU-20 pages that follow:

- [6.7.2 LDU-20 page - MAIN](#)
- [6.7.3 LDU-20 page - CONTROL LOCATIONS](#)
- [6.7.4 LDU-20 page - FUEL MODE CONTROL](#)
- [6.7.5 LDU-20 page - CA SENSOR STATUS](#)
- [6.7.6 LDU-20 page - CYLINDER BALANCING DIESEL](#)
- [6.7.7 LDU-20 page - CYLINDER BALANCING GAS](#)
- [6.7.8 LDU-20 page - CYLINDER LUBRICATION](#)
- [6.7.9 LDU-20 page - iCAT](#)
- [6.7.10 LDU-20 page - DYNAMIC COMBUSTION CONTROL \(DCC\)](#)
- [6.7.11 LDU-20 page - EXHAUST VENTILATION](#)
- [6.7.12 LDU-20 page - EXHAUST VALVES](#)
- [6.7.13 LDU-20 page - FAILURE LIST](#)
- [6.7.14 LDU-20 page - FAILURE SIMULATION](#)
- [6.7.15 LDU-20 page - FUEL SHARING \(if applicable\)](#)
- [6.7.16 LDU-20 page - FUEL SYSTEM](#)
- [6.7.17 LDU-20 page - GAS PRESSURE](#)
- [6.7.18 LDU-20 page - GAS LEAK TEST](#)
- [6.7.19 LDU-20 page - GAS ADMISSION VALVES](#)
- [6.7.20 LDU-20 page - GAV MANUAL VALVE TEST](#)
- [6.7.21 LDU-20 page - GVU & VALVE TEST](#)
- [6.7.22 LDU-20 page - KNOCK CONTROL](#)
- [6.7.23 LDU-20 page - LOG MESSAGES](#)
- [6.7.24 LDU-20 page - MAIN FUEL INJECTION](#)
- [6.7.25 LDU-20 page - PAGE INDEX](#)
- [6.7.26 LDU-20 page - PERFORMANCE DATA DIESEL](#)
- [6.7.27 LDU-20 page - PERFORMANCE DATA GAS](#)
- [6.7.28 LDU-20 page - PILOT FUEL INJECTION](#)
- [6.7.29 LDU-20 page - PILOT FUEL PRESSURE](#)
- [6.7.30 LDU-20 page - SCAVENGE AIR - EWG \(optional\)](#)
- [6.7.31 LDU-20 page - SCREENSHOT](#)
- [6.7.32 LDU-20 page - SOFTWARE INFO](#)
- [6.7.33 LDU-20 page - IMO CRC INFO](#)
- [6.7.34 LDU-20 page - SOFTWARE TOOLS](#)
- [6.7.35 LDU-20 page - SYSTEM STATUS](#)

- 6.7.36 LDU-20 page - SYSTEM SETTINGS
- 6.7.37 LDU-20 page - TEMPERATURES
- 6.7.38 LDU-20 page - USER PARAMETERS
- 6.7.39 LDU-20 page - LOG ENTRY DATA
- 6.7.40 LDU-20 page - DATE
- 6.7.41 LDU-20 page - ETHERNET
- [section not applicable for this engine]

6.7.2 LDU-20 page - MAIN

Fig 6-14 MAIN

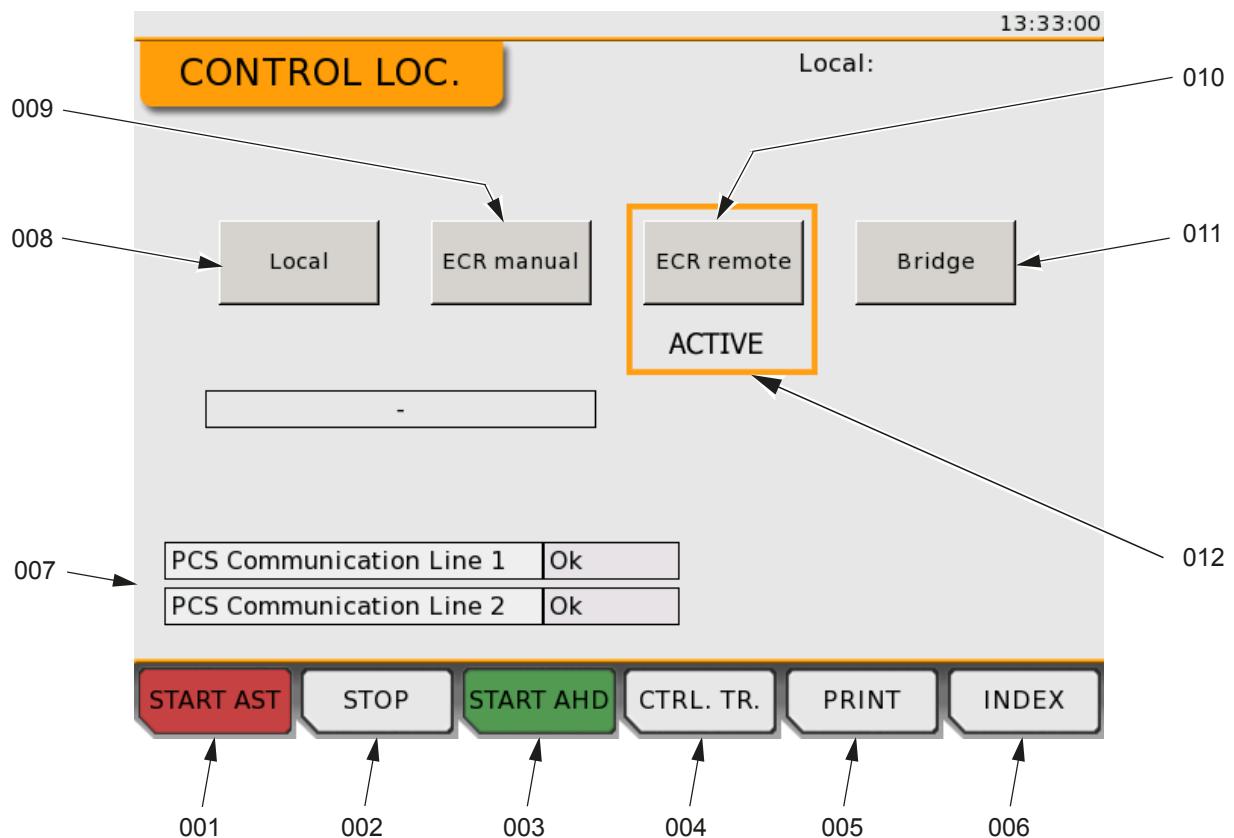
Tab 6-1 MAIN

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	OVERRIDE button	Cancels a shutdown from the safety system
006	ON/OFF button	Sets to On and OFF the auxiliary blowers
007	Different sensor indications	Indications that are necessary to operate the engine locally
008	Load	Shows the value of the estimated engine power or the engine load in percent (%)
009	Fuel	Shows the used fuel Shows: Diesel or Gas
010	Engine status	Shows the engine status Shows: Start interlock, Stopped, Slow turning, Air Run, Starting, Heavy Start, Running or Shutdown, Angle Detection Slow-down
011	Index button	Opens the INDEX page
012	Print button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
013	Engine speed gauge	Shows engine rpm in ahead (AHD) or astern (AST) direction
014	Indication of this LDU-20	Shows if Local has control, or does not have control
015	Control transfer request indication	Text flashes to show a transfer request if one control location requests a control transfer
016	Indication of status	Shows the status of different items, if applicable
017	Speed Setpoint button	Changes to manual speed control mode
018	Manual speed setpoint	Manually adjust the rpm between zero and maximum. The maximum value is related to the installation specifications (rating etc)
019	External speed setpoint	Shows the setpoint sent to the ECS from the remote control system
020	Auxiliary Blowers status	Shows if one or the two auxiliary blowers are running Shows: Running or Stopped
021	Indication of shutdown	Shows the shutdown status. <ul style="list-style-type: none">When a shutdown is active, the red indicator (SHD) is on and Engine status (010) shows stopped.When you gave the OVERRIDE command (005), the red indicator (Ovrd SHD) is on. Press the Reset button to enable a restart of the engine.

Item	Function	Effect
022	Control location	Shows the active control location Shows: Local, ECR manual, ECR remote or Bridge
023	External fuel command setpoint	Shows the fuel command setpoint that the ECS calculates related to the speed setpoint from the remote control system
024	Manual fuel command setpoint	Manually adjust the fuel command setpoint between 0% and 150%
025	Fuel Command button	Changes to manual fuel command mode NOTE: The fuel command mode is only applicable, if the control location is "Local" or "ECR manual".

NOTE: If the control location is "Local" or "ECR manual", obey the items that follow:

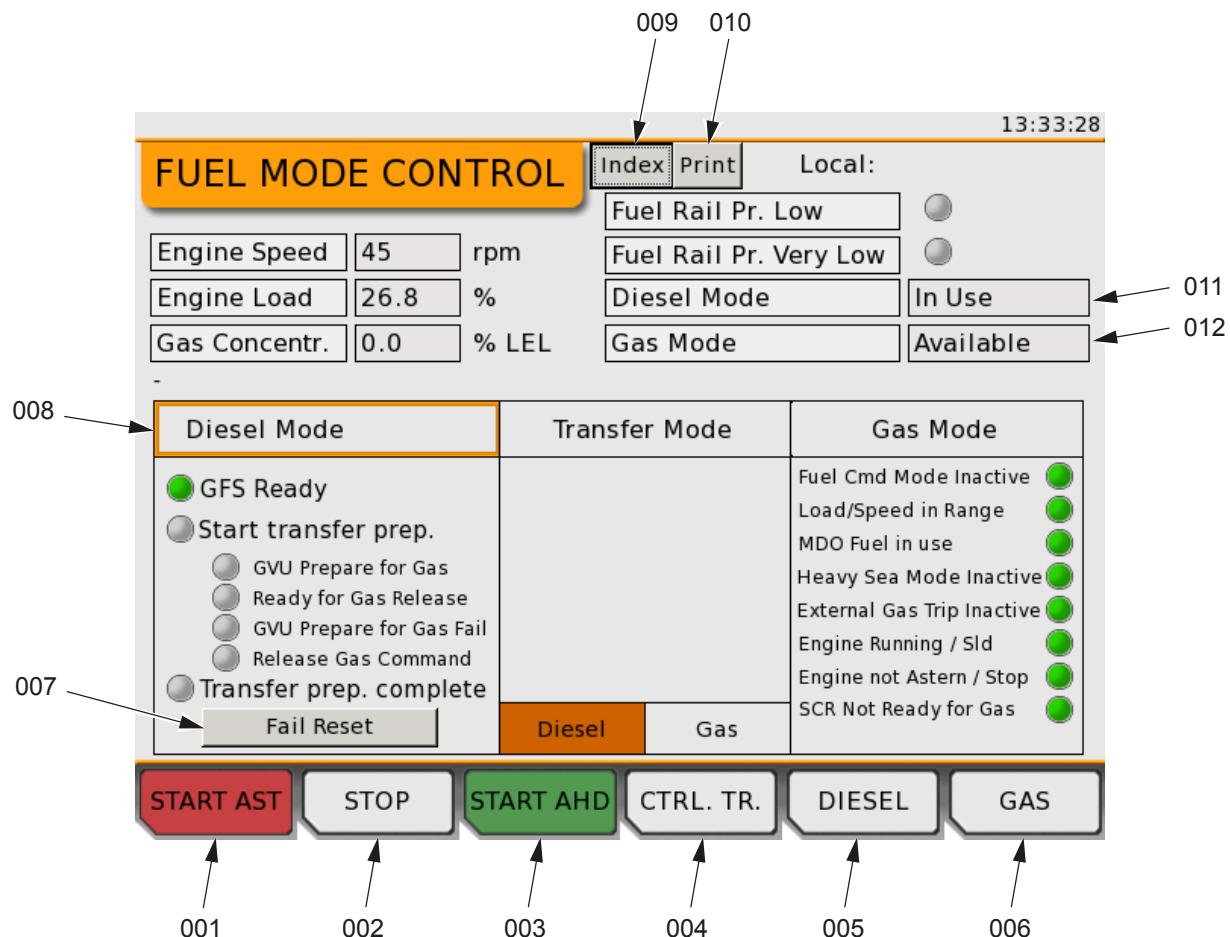
- The operator must set the setpoint for speed setpoint or for load command manually, because the speed / load program is not in automatic mode.
- If a slowdown message is active, the operator must set the related setpoint for slowdown manually.



Page left intentionally blank

6.7.3 LDU-20 page - CONTROL LOCATIONS

Fig 6-15 CONTROL LOCATIONS

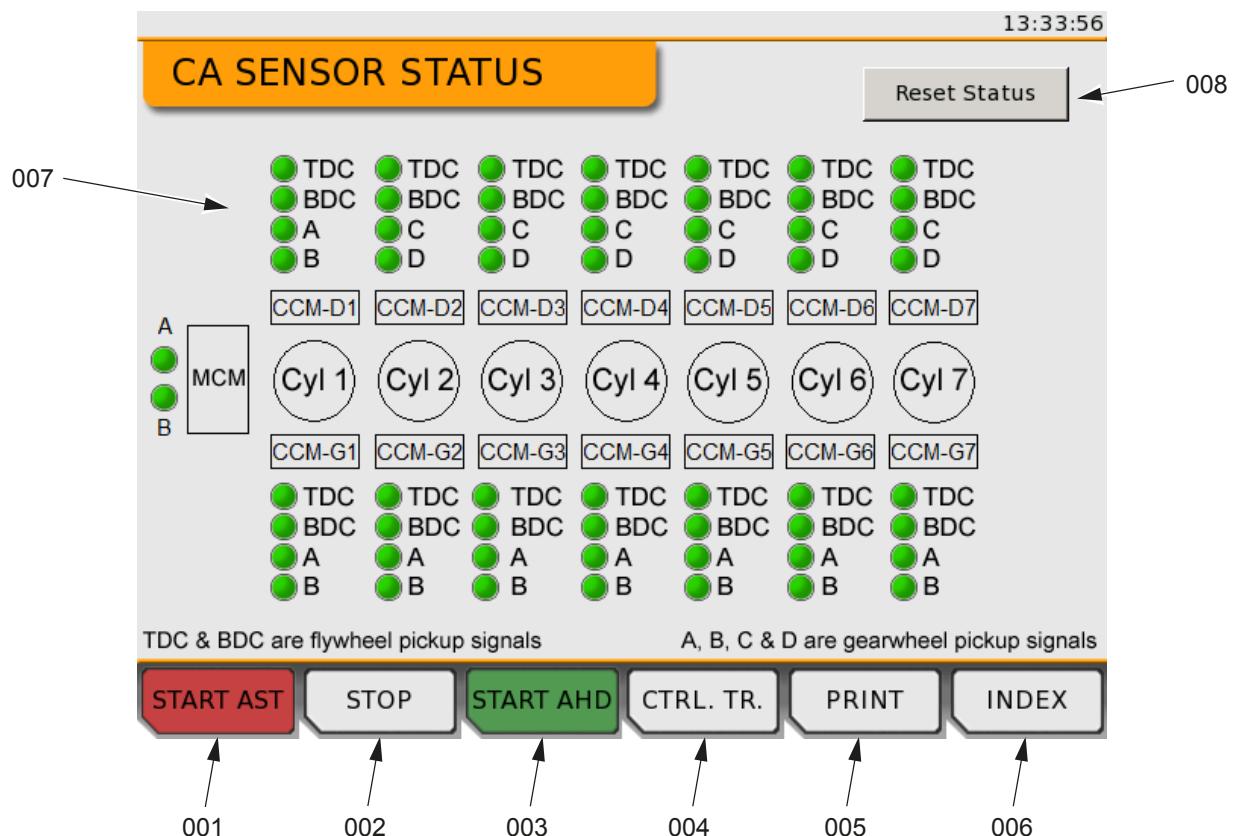


Tab 6-2 CONTROL LOCATIONS

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	PCS Communication Line 1 / 2 status	Shows the status of the two redundant PCS Communication lines between the ECS and the remote control system. Shows OK, or ERROR
008	Local button	Requests or accepts a control transfer to or from the LDU-20 on the engine
009	ECR manual button	Requests or accepts a control transfer to or from the LDU-20 in the ECR
010	ECR remote button	Requests or accepts a control transfer to or from the remote control system in the ECR
011	Bridge button	Requests or accepts a control transfer to or from the remote control system on the bridge
012	ACTIVE frame	Indicates which of the four possible locations is in control of the engine

6.7.4 LDU-20 page - FUEL MODE CONTROL

Fig 6-16 FUEL MODE CONTROL

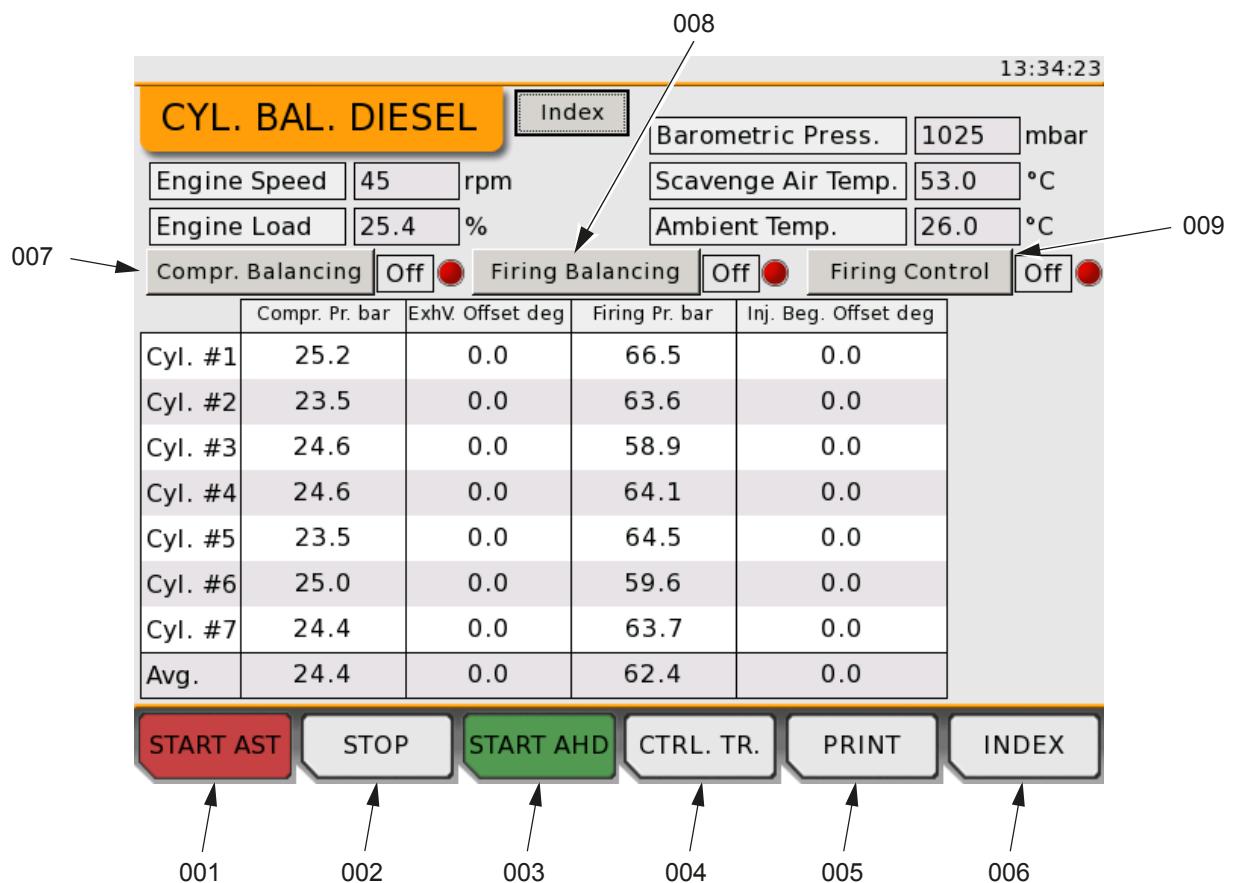


Tab 6-3 FUEL MODE CONTROL

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	DIESEL button	Switches to diesel mode
006	GAS button	Starts transfer to gas mode operation
007	Fail Reset button	Resets a failure that occurred during gas preparation NOTE: Use this button only when you have done the related measures to repair the failure.
008	Active mode	Shows the active operation mode (orange frame) NOTE: GFS - Gas Fuel Supply
009	Index button	Opens the INDEX page
010	Print button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
011	Diesel Mode	Shows the status of diesel mode
012	Gas Mode	Shows the status of gas mode

6.7.5 LDU-20 page - CA SENSOR STATUS

Fig 6-17 CA SENSOR STATUS

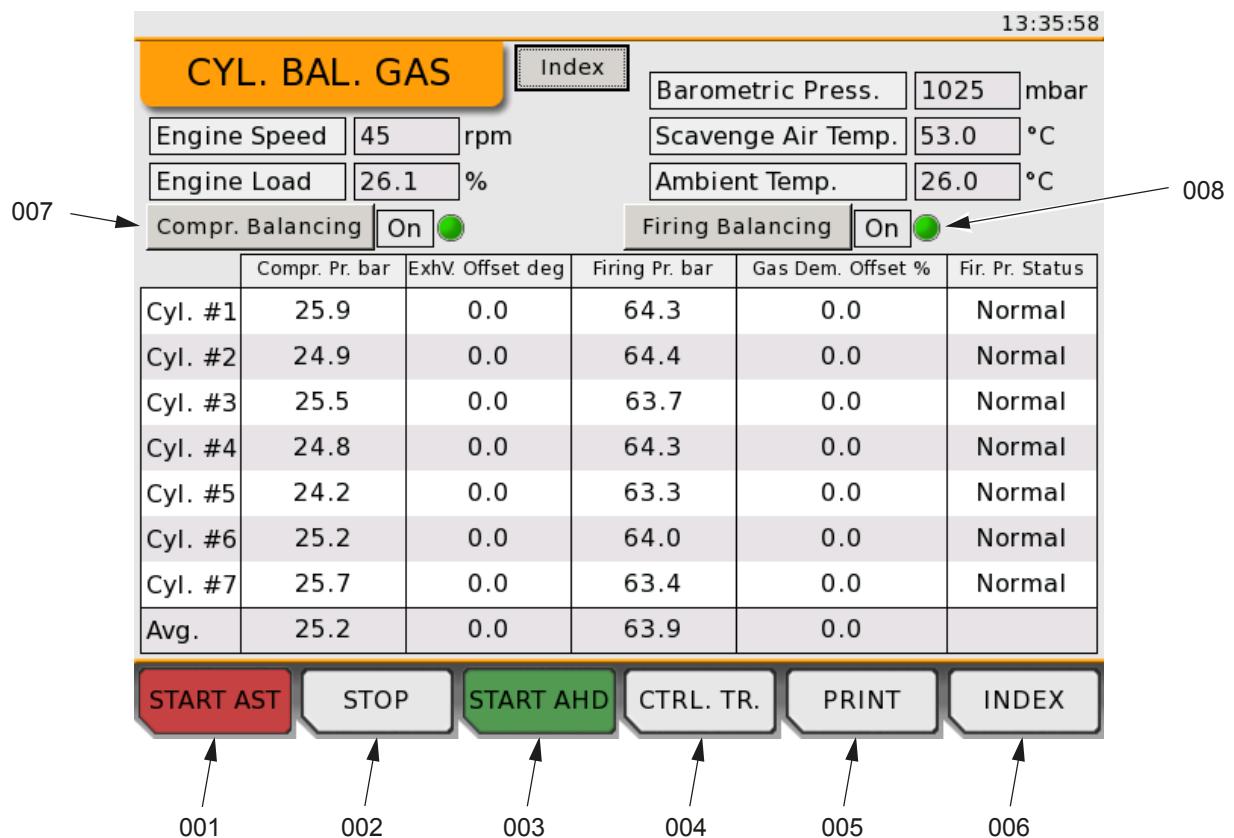


Tab 6-4 CA SENSOR STATUS

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Status indication	Shows the status of the crank angle sensors: <ul style="list-style-type: none">• Green - status OK• Red - status not OK
008	Reset Status button	Resets the status of the crank angle sensors

6.7.6 LDU-20 page - CYLINDER BALANCING DIESEL

Fig 6-18 CYLINDER BALANCING DIESEL

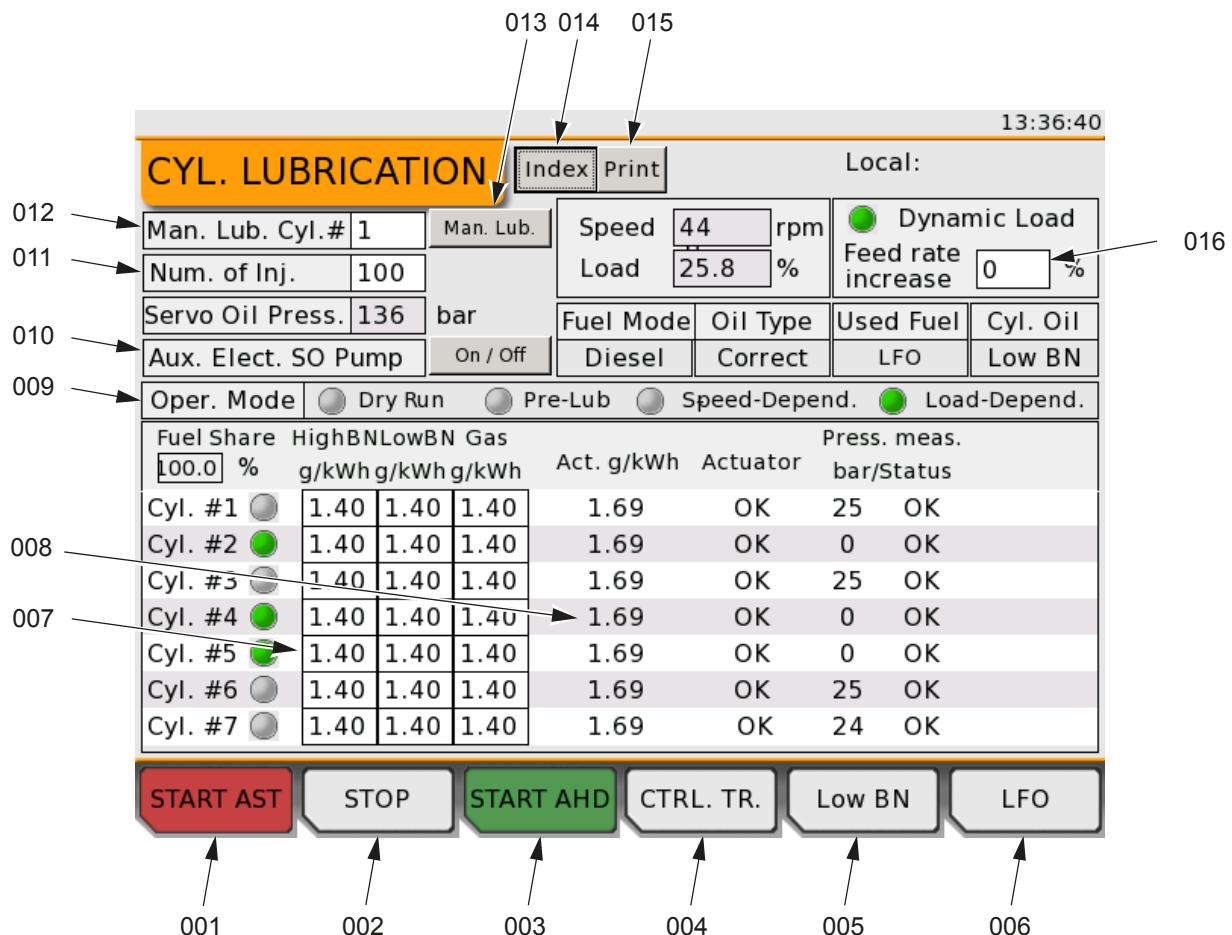


Tab 6-5 CYLINDER BALANCING DIESEL

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Compr. Balancing button	Changes the compression balancing function <ul style="list-style-type: none">• Green - ON• Red - OFF
008	Firing Balancing button	Changes the firing balancing function <ul style="list-style-type: none">• Green - ON• Red - OFF
009	Firing Control button	Changes the firing control function <ul style="list-style-type: none">• Green - ON• Red - OFF

6.7.7 LDU-20 page - CYLINDER BALANCING GAS

Fig 6-19 CYLINDER BALANCING GAS

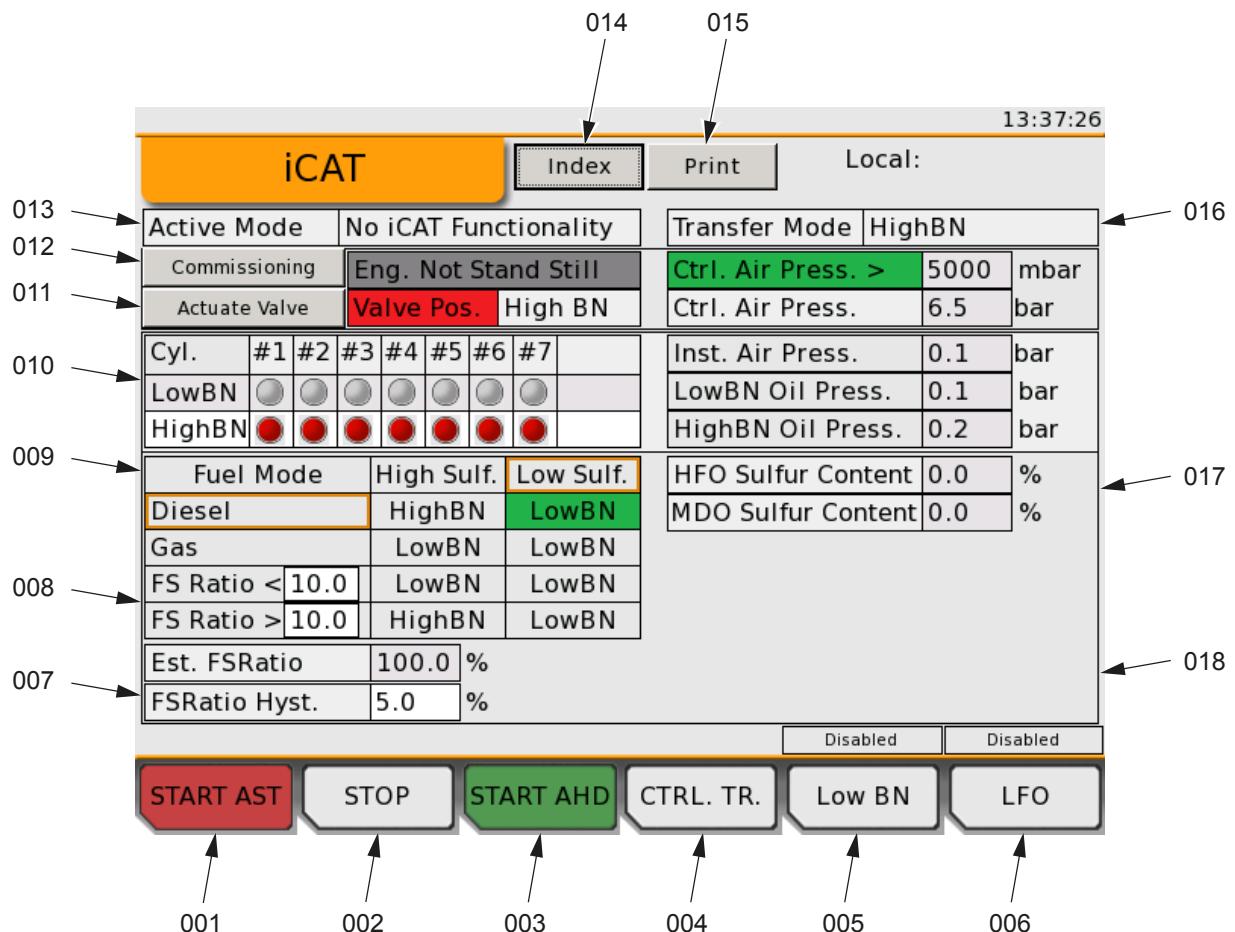


Tab 6-6 CYLINDER BALANCING GAS

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Compr. Balancing button	Changes the compression balancing function <ul style="list-style-type: none">• Green - ON• Red - OFF
008	Firing Balancing button	Changes the firing balancing function <ul style="list-style-type: none">• Green - ON• Red - OFF

6.7.8 LDU-20 page - CYLINDER LUBRICATION

Fig 6-20 CYLINDER LUBRICATION


NOTE: Some indications on this LDU-20 page are only applicable for a DF engine.

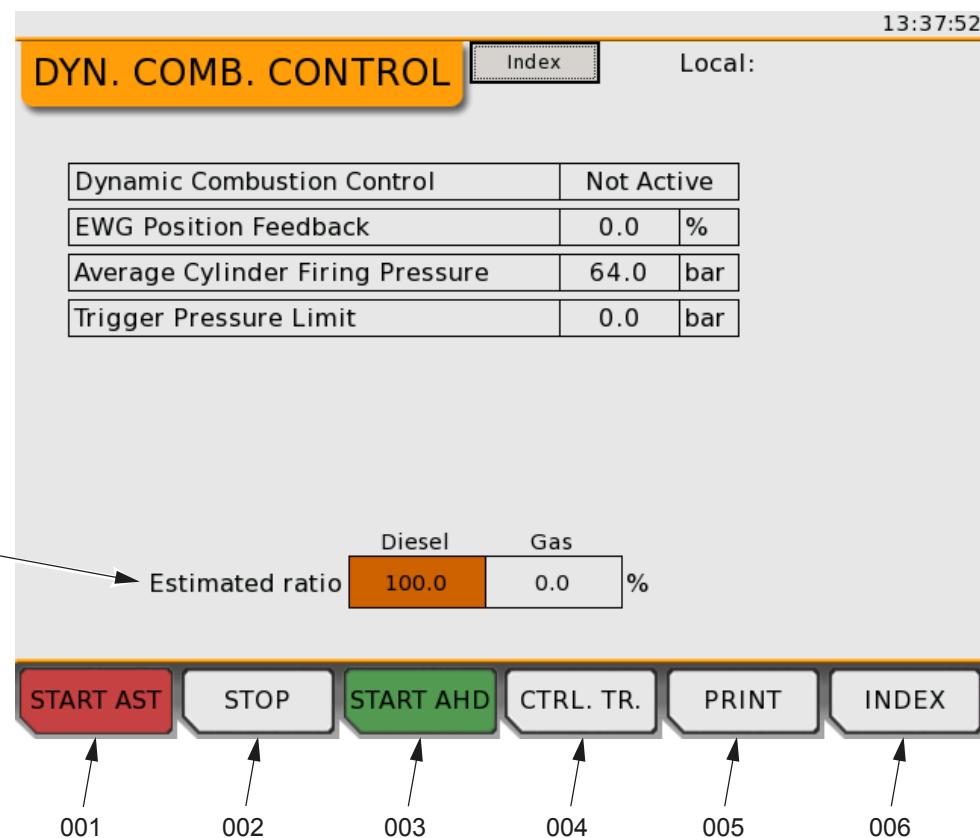
Tab 6-7 CYLINDER LUBRICATION

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	Low BN button	Changes between low BN and high BN cylinder oil, if button is enabled
006	LFO button	Changes between LFO (Light Fuel Oil) and HFO (Heavy Fuel Oil), if button is enabled
007	Feed rate of cylinder oil	Shows the nominal cylinder oil feed rate at CMCR
008	Feed rate of cylinder oil	Shows the actual cylinder oil feed rate. The value is calculated related to the engine load.
009	Oper. Mode	Shows the active operation mode of the cylinder lubrication with the green indicator
010	On/Off button	Sets to ON and OFF the auxiliary electric servo oil pump (servo oil service pump) NOTE: If necessary, start this pump only in engine stop mode.
011	Num. of Inj.	Manually set the number of injections for lubrication at engine stop mode (range 0 to 255)
012	Man. Lub. Cyl.#	Manually select the cylinder for manual lubrication: <ul style="list-style-type: none">Set 100 for all cylindersSet 1 to n for the related cylinder
013	Man. Lub. button	Starts the manual cylinder lubrication procedure related to the set values
014	Index button	Opens the INDEX page
015	Print button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
016	Feed rate increase	Manually adjust the increase of the cylinder oil feed rate for dynamic load operation

6.7.9 LDU-20 page - iCAT

Fig 6-21 iCAT (integrated Cylinder Lubricant Auto Transfer)

Tab 6-8 iCAT (integrated Cylinder lubricant Auto Transfer)

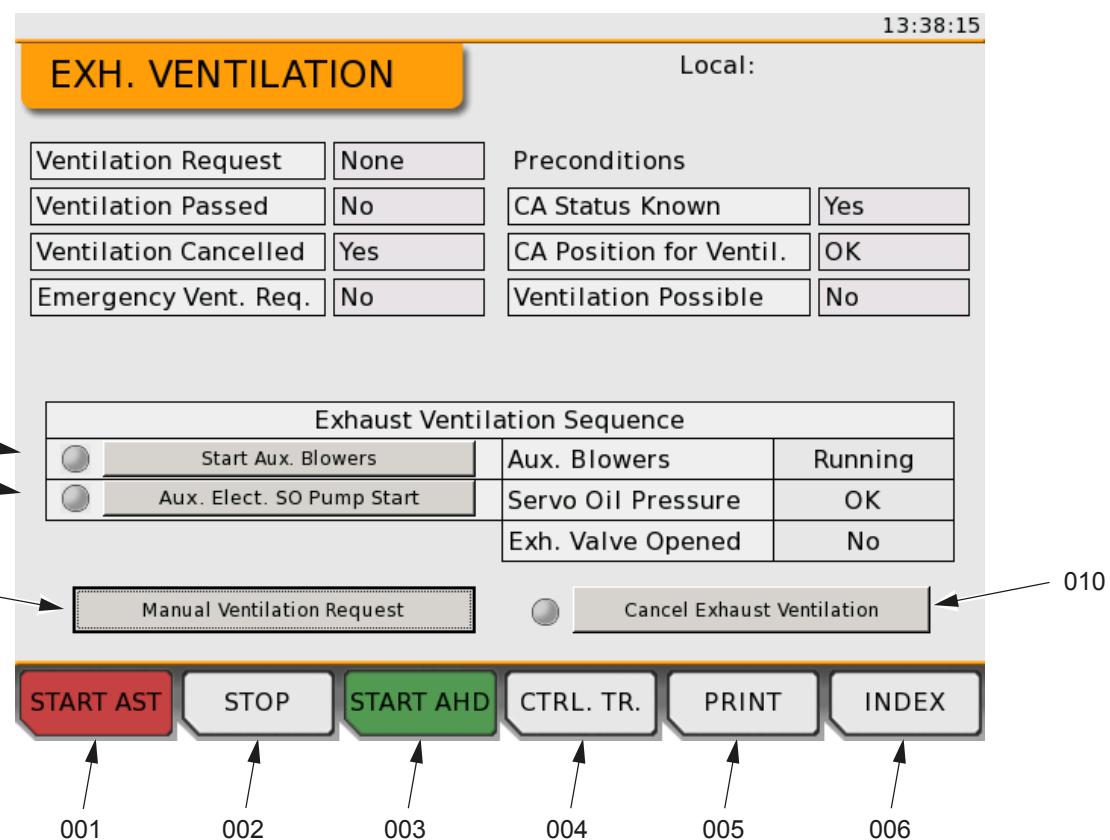

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	Low BN button	Changes between low BN and high BN cylinder oil, if button shows Enabled
006	LFO button	Changes between LFO (Light Fuel Oil) and HFO (Heavy Fuel Oil), if button shows Enabled
007	FS Ratio	For an engine with fuel sharing mode: Shows the current diesel ratio and the hysteresis of the fuel sharing ratio for the change-over of the cylinder oil NOTE: These values are internal parameters. You cannot change these values.
008	FS Ratio values	For an engine with fuel sharing mode: Shows the fuel sharing ratio value (diesel ratio in %) for the change-over of the cylinder oil NOTE: These values are only applicable, if the diesel fuel is HFO.
009	Fuel Mode	Shows the active fuel mode and the used cylinder oil (illuminated): <ul style="list-style-type: none">Green - correct cylinder oil in useRed - incorrect cylinder oil in use
010	Valve position status	Shows the position of the change-over valves related to the sensor of each valve (illuminated): <ul style="list-style-type: none">Green and grey - correct valve positionsRed and grey - incorrect valve positions
011	Actuate Valve button	Starts the valve actuating mode (only in commissioning mode), thus you manually can set the valve position of the change-over valves
012	Commissioning button	Starts the commissioning mode, if the conditions that follow are OK: <ul style="list-style-type: none">Control transfer from RCS to ECSEngine at standstillUsual range of control air pressure
013	Active Mode status	Shows the active mode status: <ul style="list-style-type: none">No iCAT FunctionalityAuto ModeAuto Mode - RCS OfflineCommissioning Mode

Item	Function	Effect
014	Index button	Opens the INDEX page
015	Print button	Makes a screenshot of the current screen, refer to section 6.7.31 LDU-20 page - SCREENSHOT
016	Transfer Mode status	Shows the transfer mode status: <ul style="list-style-type: none">• High BN• Low BN• Transferring• Transfer interlock
017	Sulfur Content	Shows the sulfur content of the fuels related to the settings in the RCS NOTE: Here you only can change these values, if the RCS has failed.
018	Force Transfer button	Starts a transfer (only applicable if a transfer is interlocked) NOTE: An interlock is active, if the related cylinder oil pressure is too low. Use this button only, if you are sure to override the interlock.

Page left intentionally blank

6.7.10 LDU-20 page - DYNAMIC COMBUSTION CONTROL (DCC)

Fig 6-22 DYNAMIC COMBUSTION CONTROL (DCC)

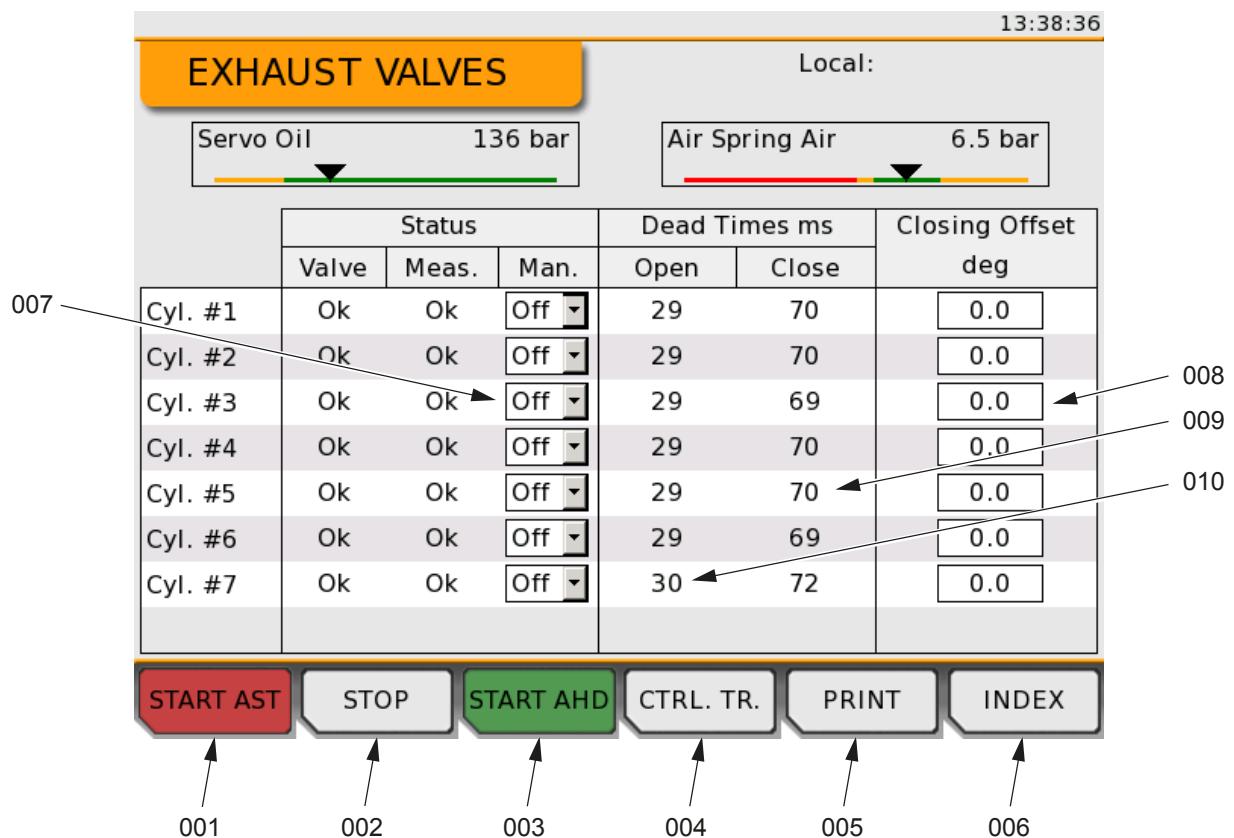


Tab 6-9 DYNAMIC COMBUSTION CONTROL (DCC)

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Estimated ratio	Shows the estimated fuel ratio

6.7.11 LDU-20 page - EXHAUST VENTILATION

Fig 6-23 EXHAUST VENTILATION

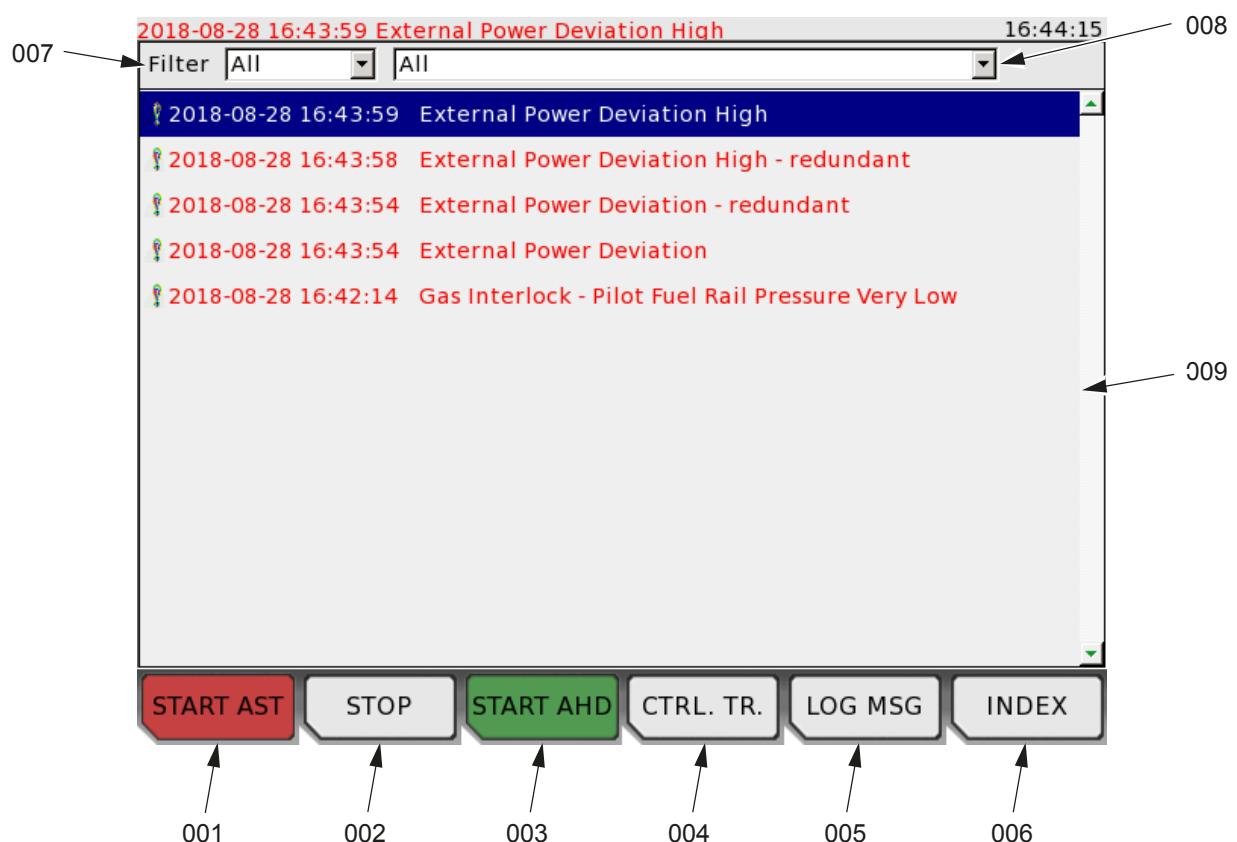

NOTE: For a description of the exhaust ventilation refer to section [2.7 Prevention of explosions in the exhaust gas system \(gas mode\)](#).

Tab 6-10 EXHAUST VENTILATION

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to section 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Manual Ventilation Request button	Sends a signal for ventilation request (Ventilation Request "Manual")
008	Aux. Elect. SO Pump start button	<p>Starts and stops the auxiliary electrical servo oil pump</p> <p>NOTE: The green indicator light shows that you should start the auxiliary electrical servo oil pump for sufficient servo oil pressure.</p> <p>NOTE: You only can start the auxiliary electrical servo oil pump, if the conditions that follow are OK:</p> <ul style="list-style-type: none"> • Green indicator light is on
009	Start Aux. Blowers button	<p>Starts and stops the auxiliary blowers</p> <p>NOTE: The green indicator light shows that you should start the auxiliary blowers for ventilation.</p> <p>NOTE: You only can start the auxiliary blowers, if the conditions that follow are OK:</p> <ul style="list-style-type: none"> • Green indicator light is on • Shutdown signal is reset
010	Cancel Exhaust Ventilation button	<p>WARNING</p> <p>Explosion hazard. Cancel the exhaust ventilation only in an urgent situation. Gas could stay on the engine side, if the exhaust ventilation is not sufficient.</p> <p>Stops the exhaust ventilation</p> <p>NOTE: The control system stops the auxiliary blowers and auxiliary electrical servo oil pump.</p>

6.7.12 LDU-20 page - EXHAUST VALVES

Fig 6-24 EXHAUST VALVES

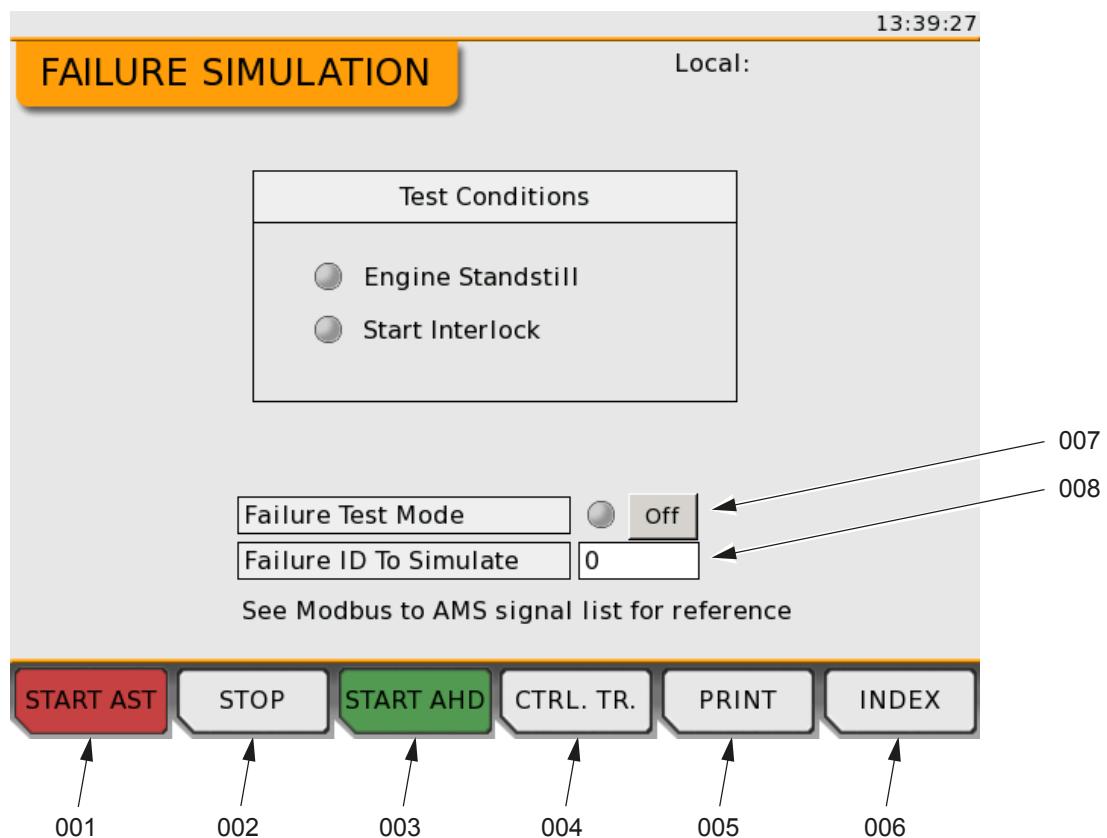


Tab 6-11 EXHAUST VALVES

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Operation mode selection button	Selects the operation mode of the related exhaust valve <ul style="list-style-type: none"> • On - manual operation mode (valve opens, if conditions are OK) • Off - automatic operation mode (valve closes)
008	Closing Offset	Manually adjust the closing offset of the exhaust valve
009	Open Dead Times	Shows the time between the open command to the solenoid valve of the VCU and the exhaust valve stroke start
010	Close Dead Times	Shows the time between the close command to the solenoid valve of the VCU and the exhaust valve stroke start

6.7.13 LDU-20 page - FAILURE LIST

Fig 6-25 FAILURE LIST

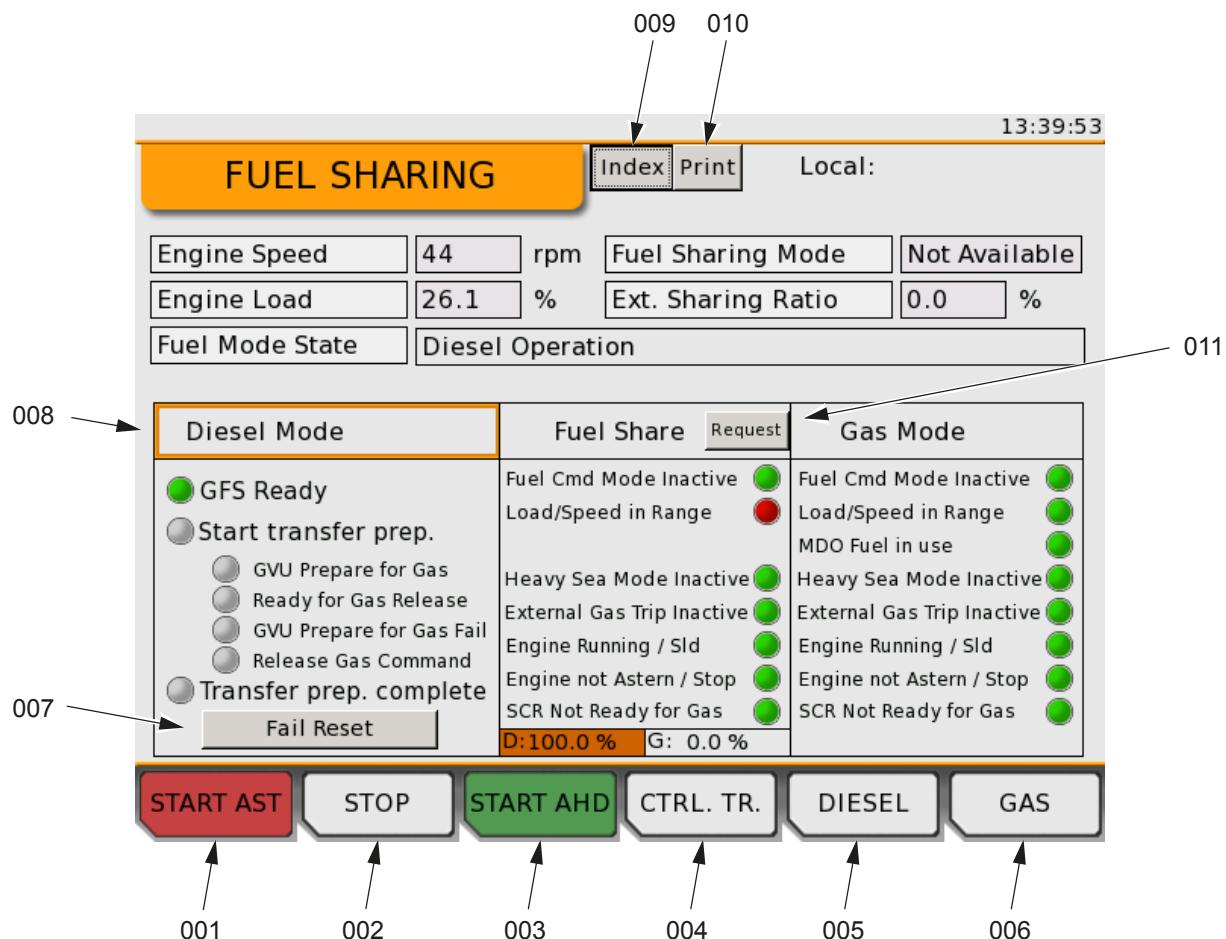


Tab 6-12 FAILURE LIST

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	LOG MSG button	Opens the LOG MESSAGE page
006	INDEX button	Opens the INDEX page
007	Filter button	Manually select the applicable type filter for the related failure
008	Filter button	Manually select the applicable category filter for the related failure
009	Scroll bar	Manually scroll through the failure list

6.7.14 LDU-20 page - FAILURE SIMULATION

Fig 6-26 FAILURE SIMULATION

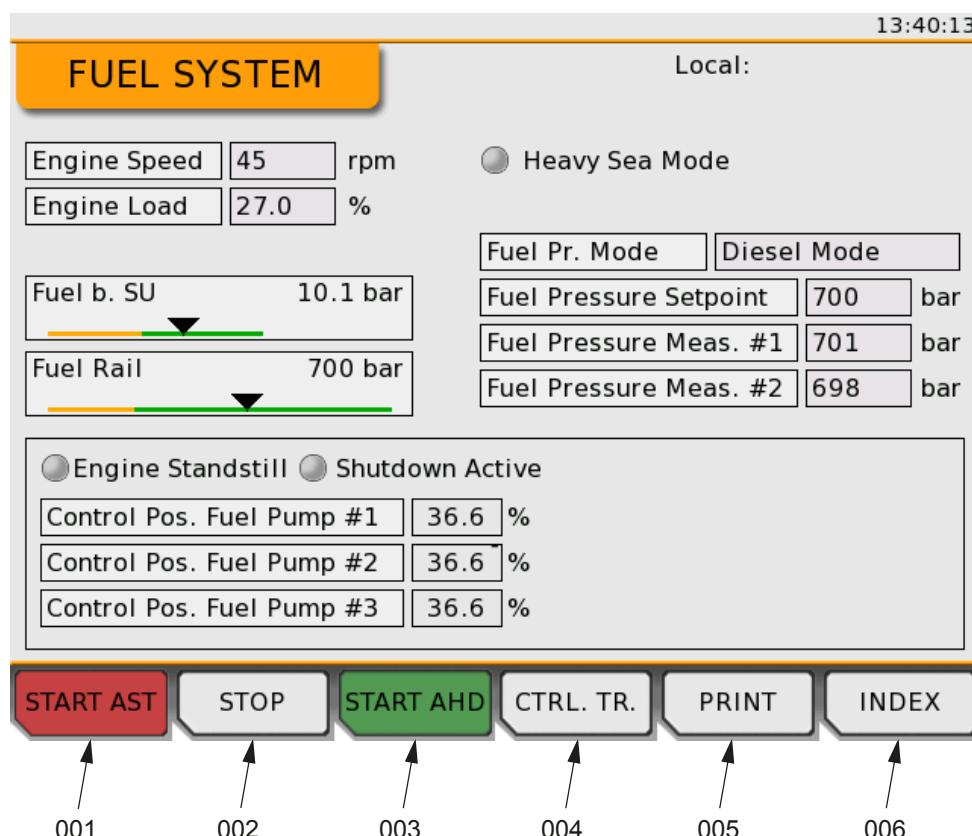


Tab 6-13 FAILURE SIMULATION

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to section 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Failure Test Mode button	Sets to ON and OFF the failure test mode NOTE: You only can start the test mode, if the conditions that follow are OK: <ul style="list-style-type: none"> • Engine at standstill (green indicator light is on) • No shutdown signal active • Turning gear is engaged, thus there is a start interlock (green indicator light is on)
008	Failure ID To Simulate	Manually set the failure number related to the Modbus to AMS signal list NOTE: This specified failure will be sent to the RCS for a specific test.

6.7.15 LDU-20 page - FUEL SHARING (if applicable)

Fig 6-27 FUEL SHARING (if applicable)

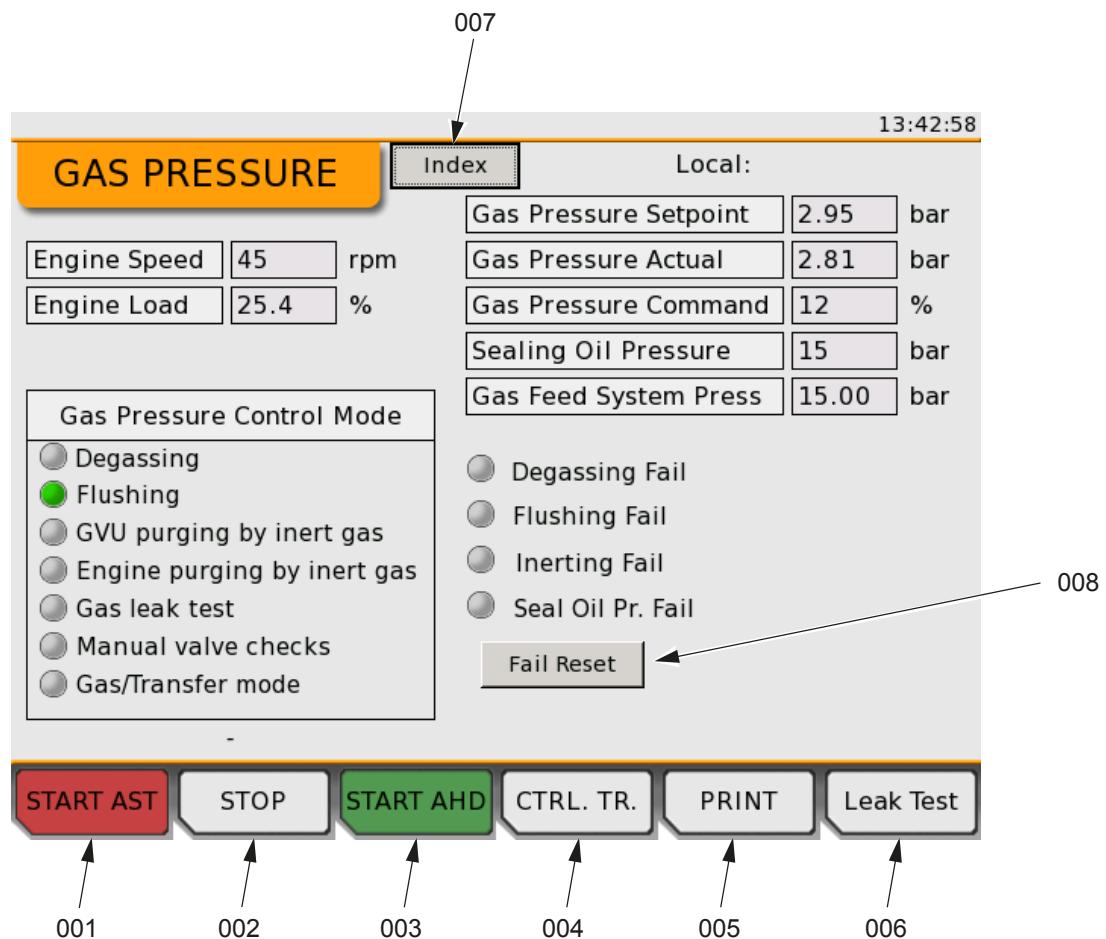


Tab 6-14 FUEL SHARING (if applicable)

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	DIESEL button	Switches to diesel mode
006	GAS button	Starts transfer to gas mode operation
007	Fail Reset button	Resets a failure that occurred during gas preparation NOTE: Use this button only when you have done the related measures to repair the failure.
008	Active mode	Shows the active operation mode (orange frame) NOTE: GFS - Gas Fuel Supply
009	Index button	Opens the INDEX page
010	Print button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
011	Fuel Share request button	Requests fuel sharing mode NOTE: You have to set the value for the ratio of liquid fuel to gas in the RCS.

6.7.16 LDU-20 page - FUEL SYSTEM

Fig 6-28 FUEL SYSTEM

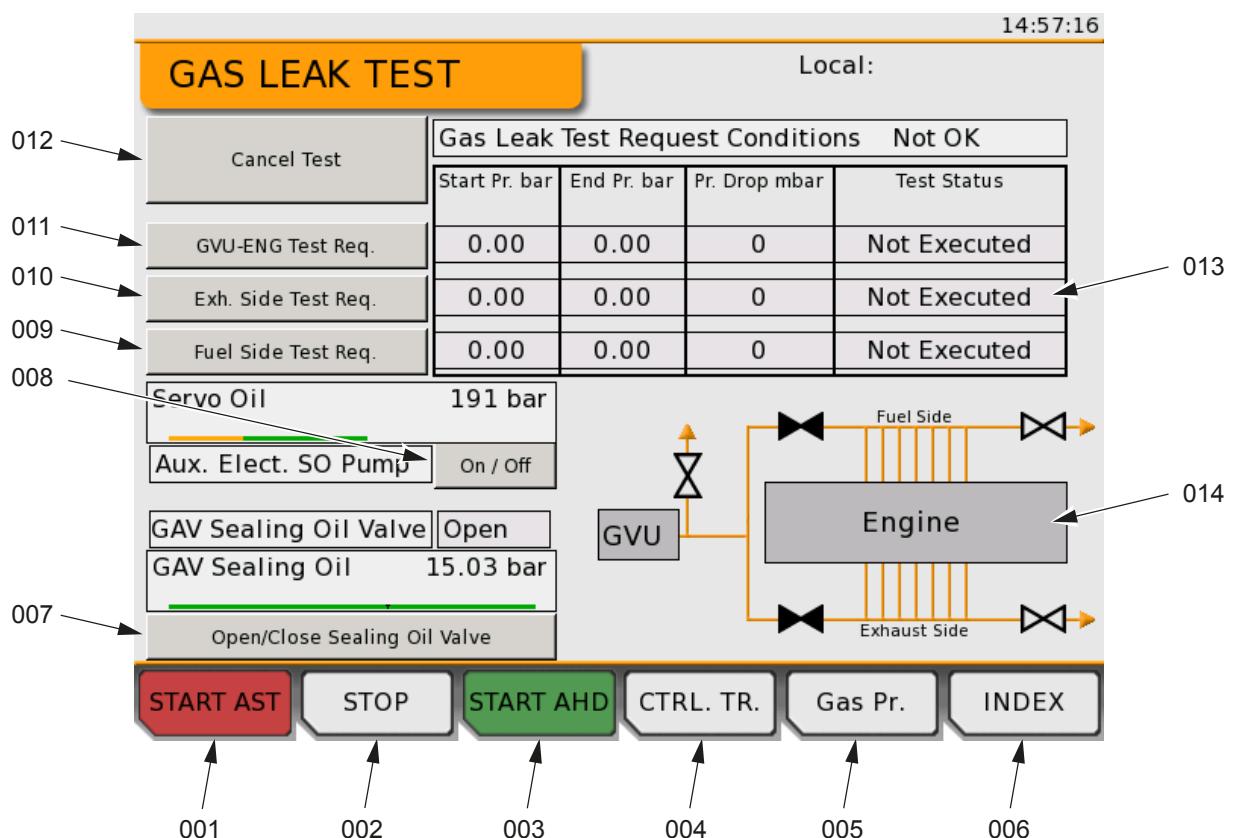

NOTE: Some indications on this LDU-20 page are only applicable for a DF engine.

Tab 6-15 FUEL SYSTEM

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page

6.7.17 LDU-20 page - GAS PRESSURE

Fig 6-29 GAS PRESSURE

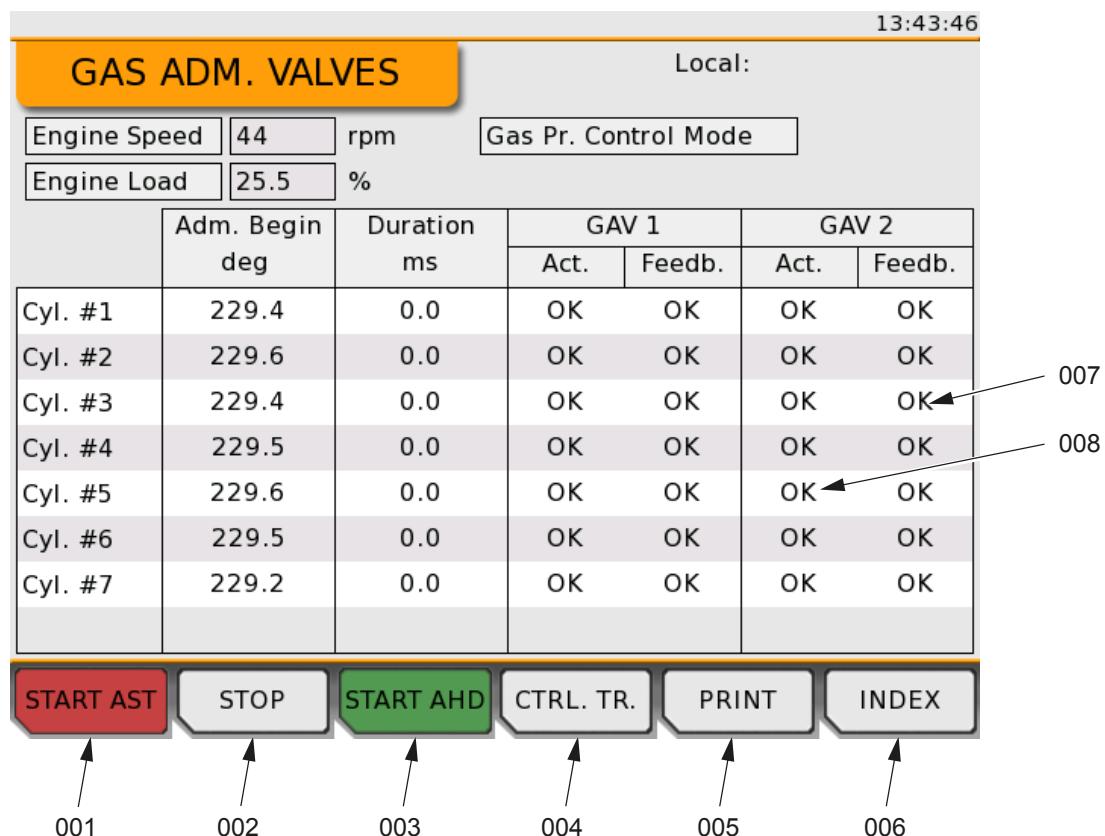


Tab 6-16 GAS PRESSURE

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	Leak Test button	Opens the GAS LEAK TEST page
007	Index button	Opens the INDEX page
008	Fail Reset button	Resets the failure, that is indicated in red

6.7.18 LDU-20 page - GAS LEAK TEST

Fig 6-30 GAS LEAK TEST

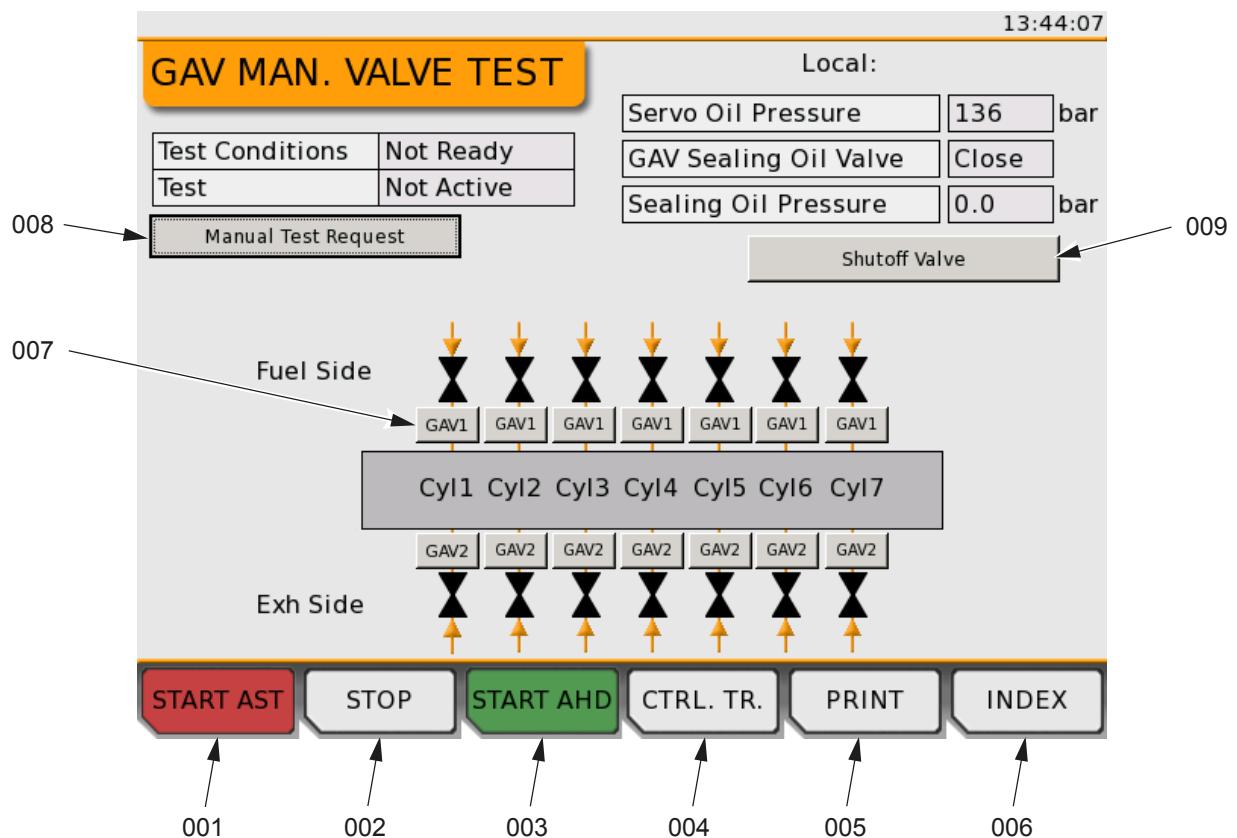


Tab 6-17 GAS LEAK TEST

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	Gas Pr. button	Opens the GAS PRESSURE page
006	INDEX button	Opens the INDEX page
007	Open/Close Sealing Oil Valve button	Opens or closes the sealing oil valves
008	Aux. Elect. SO Pump start button	Starts and stops the auxiliary electrical servo oil pump manually
	NOTE: You only can start the tests (item 009 to 011), if the conditions that follow are OK: <ul style="list-style-type: none"> • Engine at standstill • Turning gear is engaged NOTE: Each test is OK, if during the test period of 1000 seconds the pressure drop is less than 700 mbar.	
009	Fuel Side Test Req. button	Starts the automatic gas leak test of the pipes on the fuel side, if the conditions show OK
010	Exh. Side Test Req. button	Starts the automatic gas leak test of the pipes on the exhaust side, if the conditions show OK
011	GVU - ENG Test Req. button	Starts the automatic gas leak test of the pipes between the gas valve unit (GVU) and the engine, if the conditions show OK
012	Cancel Test button	Stops the running gas leak test
013	Test status	Shows data about the three gas leak tests
014	Pipes schematic	Shows the status of the related valves: <ul style="list-style-type: none"> • black fill - valve closed • no fill - valve open

6.7.19 LDU-20 page - GAS ADMISSION VALVES

Fig 6-31 GAS ADMISSION VALVES

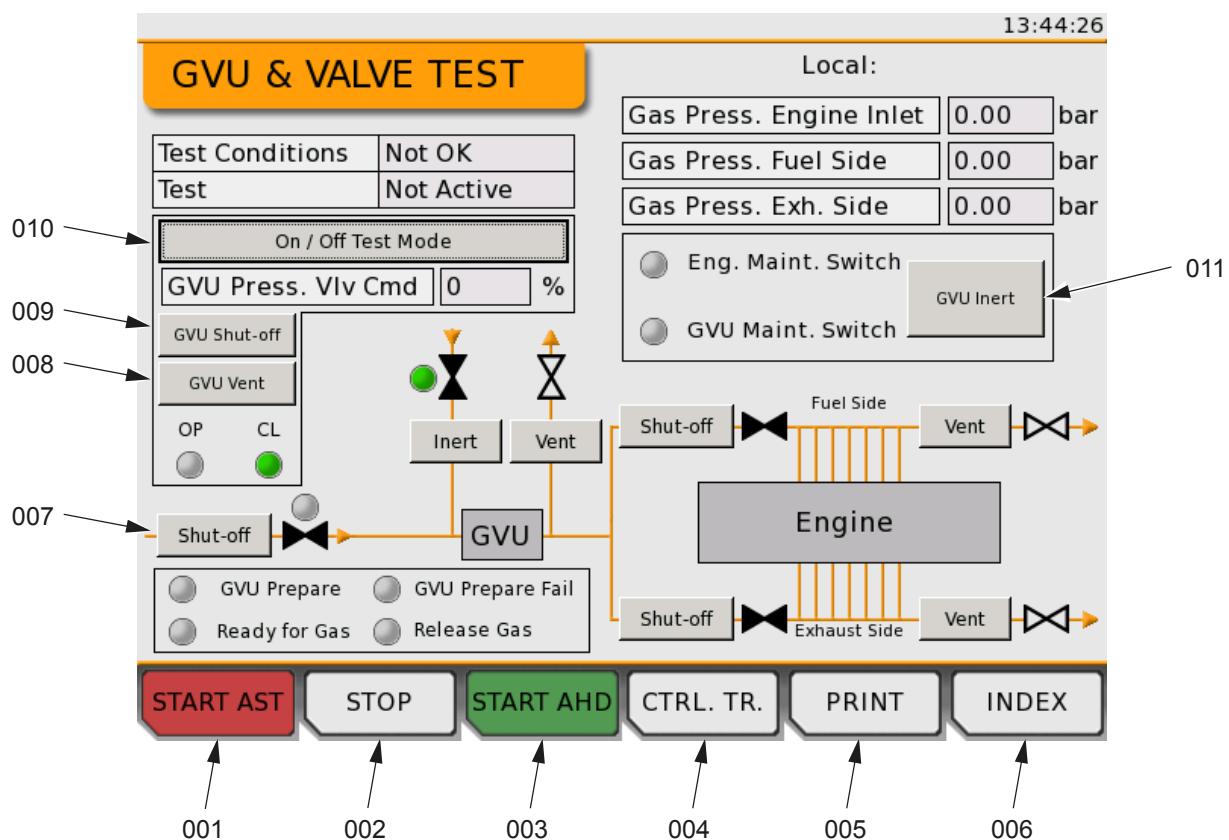


Tab 6-18 GAS ADMISSION VALVES

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	GAV Feedback status	Shows the status of the stroke sensor of the gas admission valve (GAV)
008	GAV Actuator status	Shows the status of the actuator of the gas admission valve (GAV)

6.7.20 LDU-20 page - GAV MANUAL VALVE TEST

Fig 6-32 GAV MANUAL VALVE TEST

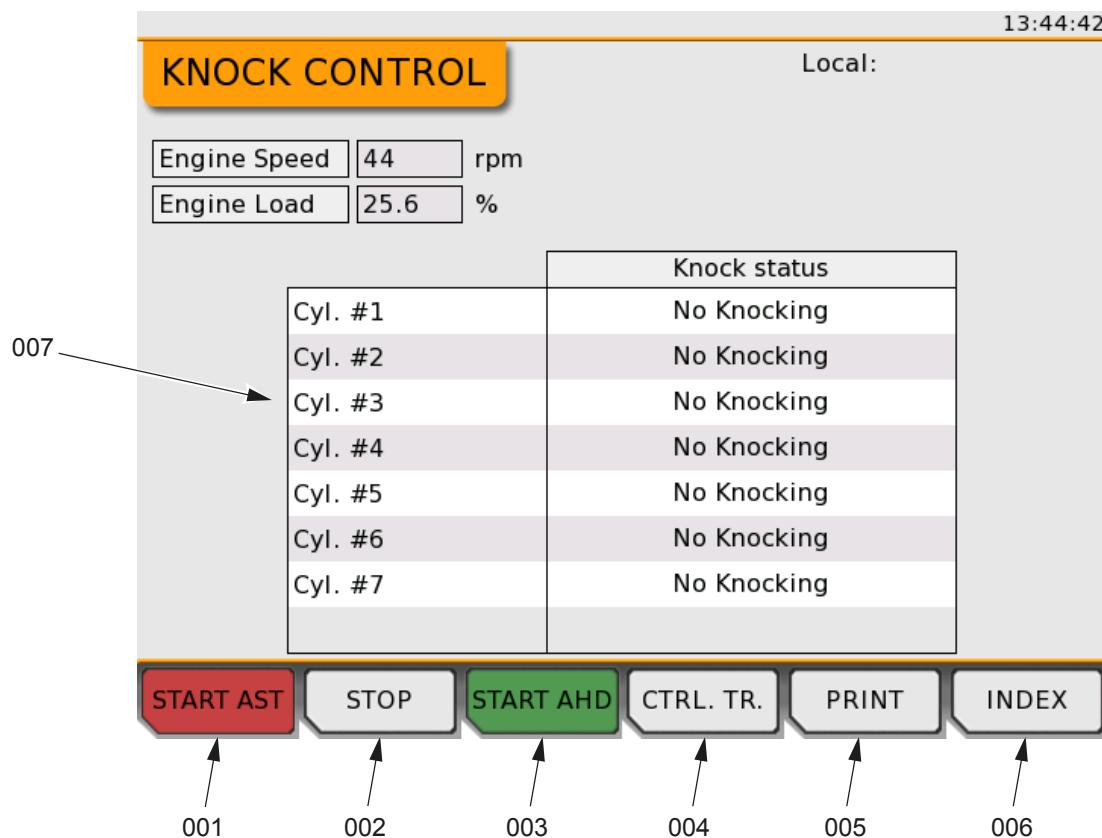


Tab 6-19 GAV MANUAL VALVE TEST

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to section 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	GAVn button	<p>Opens and closes the related gas admission valve (GAV), if manual test request is active and conditions are OK</p> <ul style="list-style-type: none"> black fill - valve closed no fill - valve open <p>NOTE: Do a check of the sound of the movement of the gas admission valve.</p>
008	Manual Test Request button	<p>Sends a signal for a manual test of the gas admission valves</p> <p>NOTE: You only can start the test mode, if the conditions that follow are OK:</p> <ul style="list-style-type: none"> Engine at standstill Turning gear is engaged Usual range of servo oil pressure Usual range of sealing oil pressure
009	Shutoff valve button	Opens and closes the shut-off valve for sealing oil (CV7296C)

6.7.21 LDU-20 page - GVU & VALVE TEST

Fig 6-33 GVU & VALVE TEST

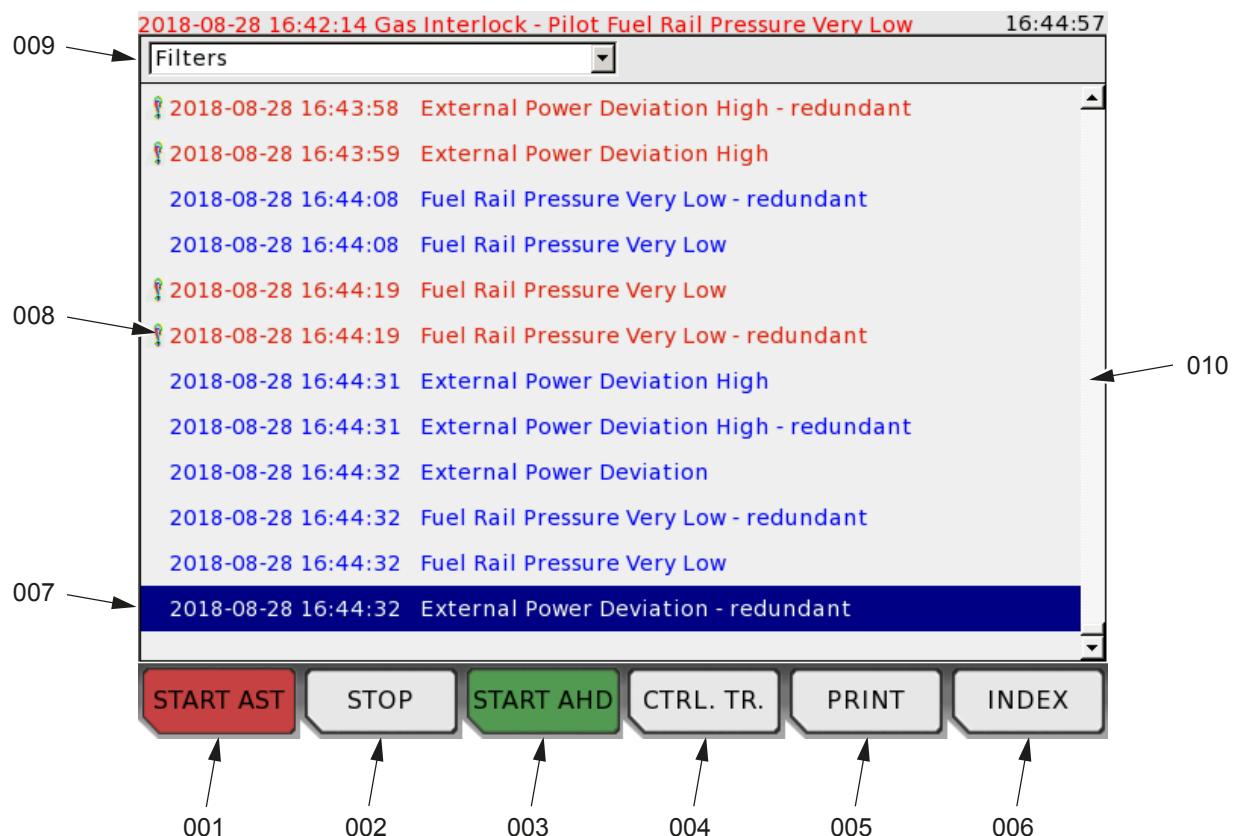


Tab 6-20 GVU & VALVE TEST

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to section 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Valve button	In test mode - opens and closes the related valve <ul style="list-style-type: none"> • black fill - valve closed • no fill - valve open
008	GVU Vent button	In test mode - opens and closes the vent valves in the GVU NOTE: These valves are not shown on the display.
009	GVU Shut-off button	In test mode - opens and closes the shut-off valves in the GVU NOTE: These valves are not shown on the display.
010	On / Off Test Mode button	Sets to On and OFF the test mode NOTE: You only can start the test mode, if the conditions that follow are OK: <ul style="list-style-type: none"> • Engine at standstill • Turning gear is engaged • No gas trip or gas interlock active • No pressure in gas supply • Usual range of control air pressure
011	GVU Inert button	Starts and stops the inert procedure of the GVU NOTE: This button is only applicable, if the two indications Eng. Maint. Switch and GVU Maint. Switch are active.

6.7.22 LDU-20 page - KNOCK CONTROL

Fig 6-34 KNOCK CONTROL

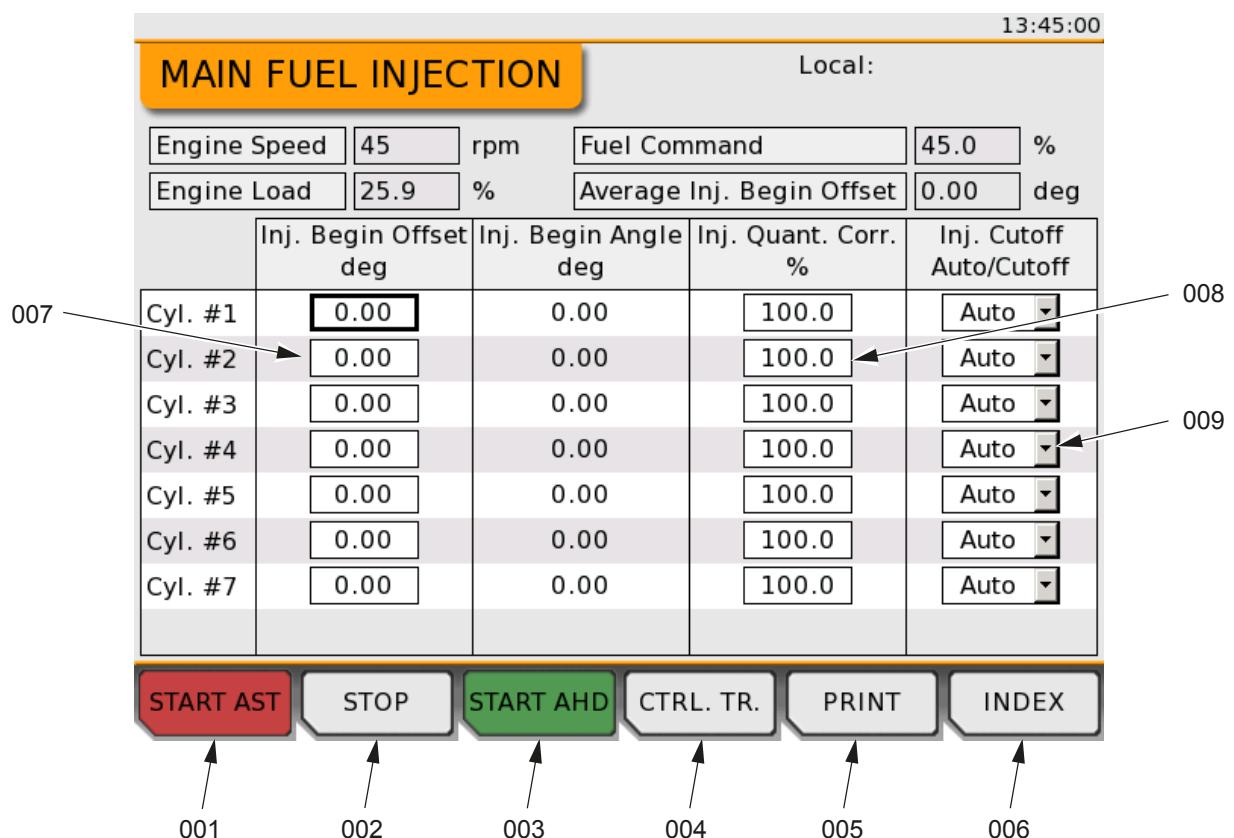


Tab 6-21 KNOCK CONTROL

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Knock status	Shows the knock status: <ul style="list-style-type: none">• No Knocking• Light Knocking• Heavy Knocking

6.7.23 LDU-20 page - LOG MESSAGES

Fig 6-35 LOG MESSAGES

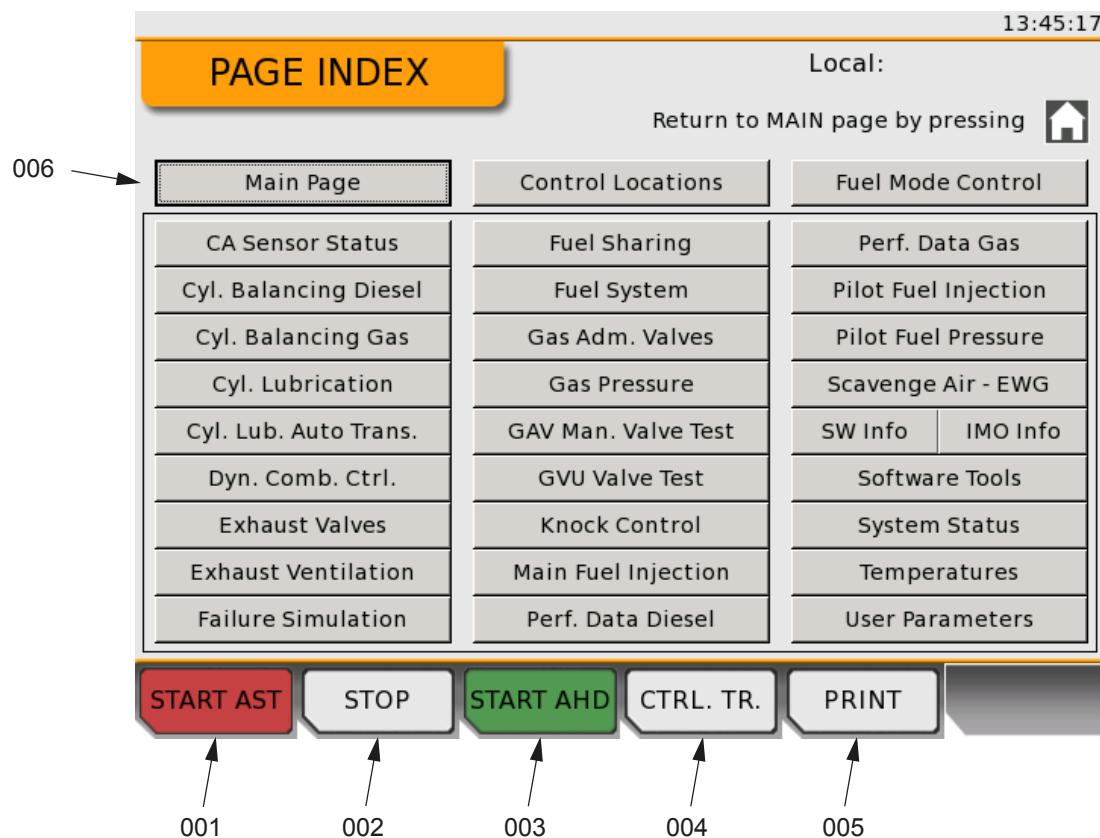


Tab 6-22 LOG MESSAGES

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Selected log message	Shows the selected log message with a blue background
008	List of log messages	Shows the messages with the latest message at the bottom
009	Filter button	Manually select the applicable filter for the log messages
010	Scroll bar	Manually scroll through the log messages

6.7.24 LDU-20 page - MAIN FUEL INJECTION

Fig 6-36 MAIN FUEL INJECTION

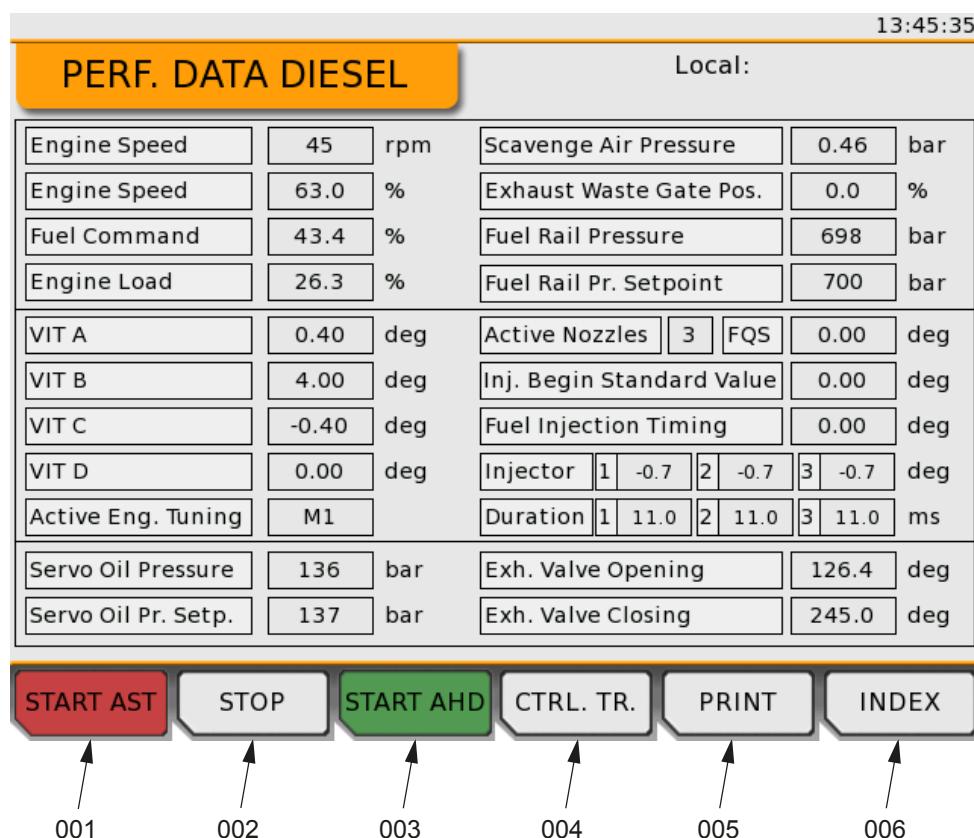


Tab 6-23 MAIN FUEL INJECTION

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Inj. Begin Offset	Manually adjust the injection begin offset (-1.5 to +1.5 degrees)
008	Inj. Quant. Corr.	Manually adjust the injection quantity (80% to 110%) if there are operation problems in the related cylinder
009	Inj. Cutoff select button	Manually select the operation mode: <ul style="list-style-type: none">• Auto - automatic operation• Cutoff - no injection

6.7.25 LDU-20 page - PAGE INDEX

Fig 6-37 PAGE INDEX

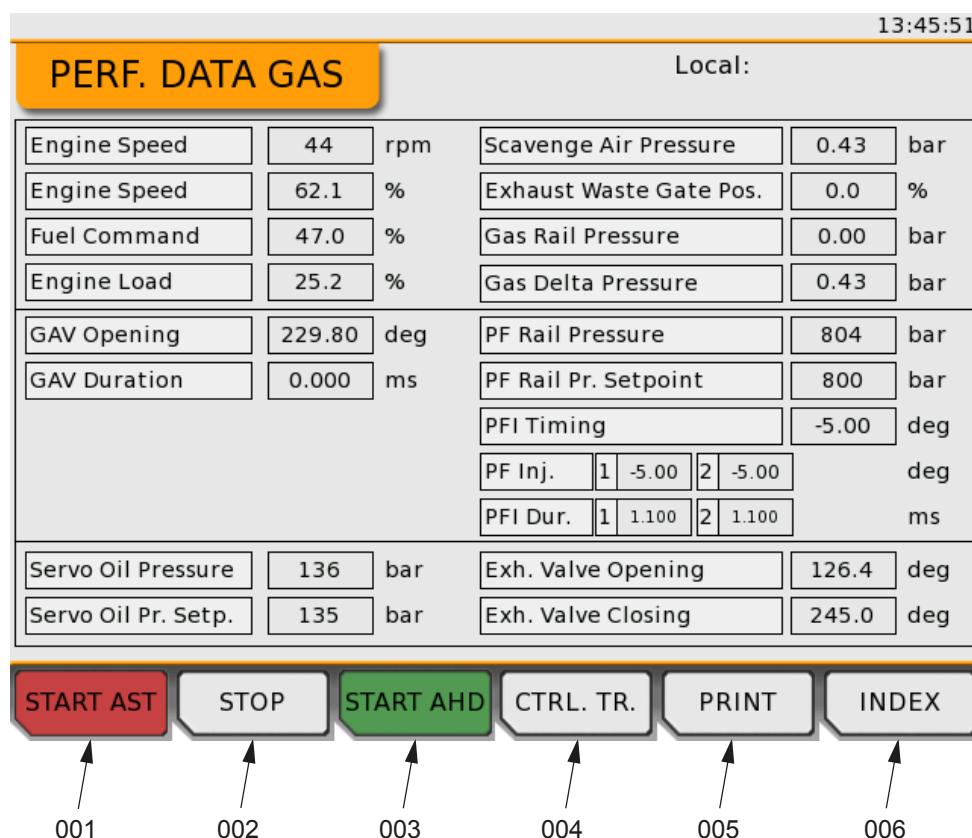


Tab 6-24 PAGE INDEX

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	Page button	Opens the selected page

6.7.26 LDU-20 page - PERFORMANCE DATA DIESEL

Fig 6-38 PERFORMANCE DATA DIESEL

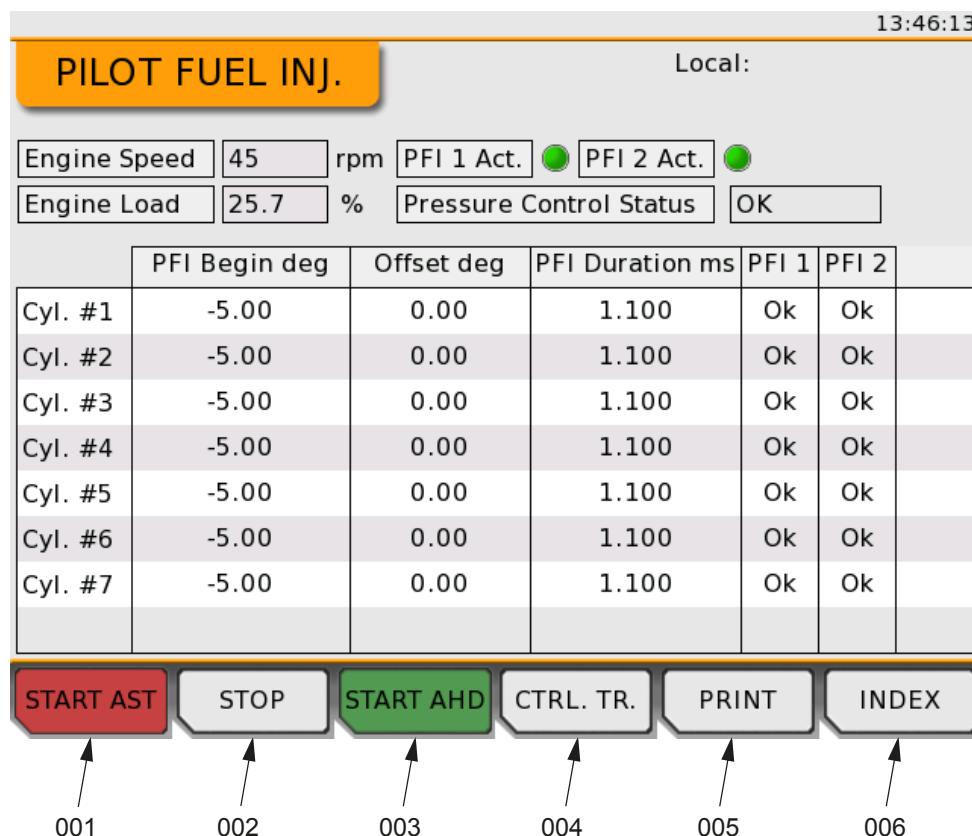


Tab 6-25 PERFORMANCE DATA DIESEL

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page

6.7.27 LDU-20 page - PERFORMANCE DATA GAS

Fig 6-39 PERFORMANCE DATA GAS

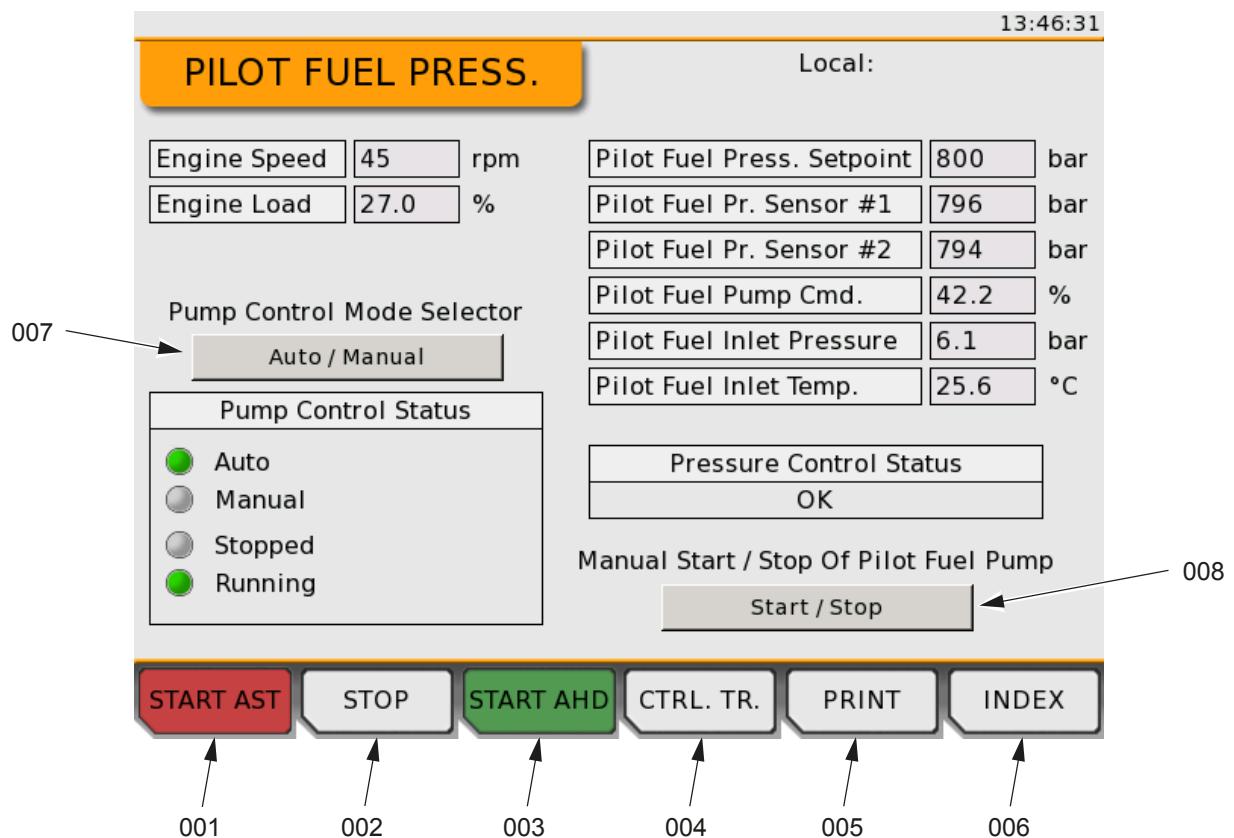


Tab 6-26 PERFORMANCE DATA GAS

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page

6.7.28 LDU-20 page - PILOT FUEL INJECTION

Fig 6-40 PILOT FUEL INJECTION

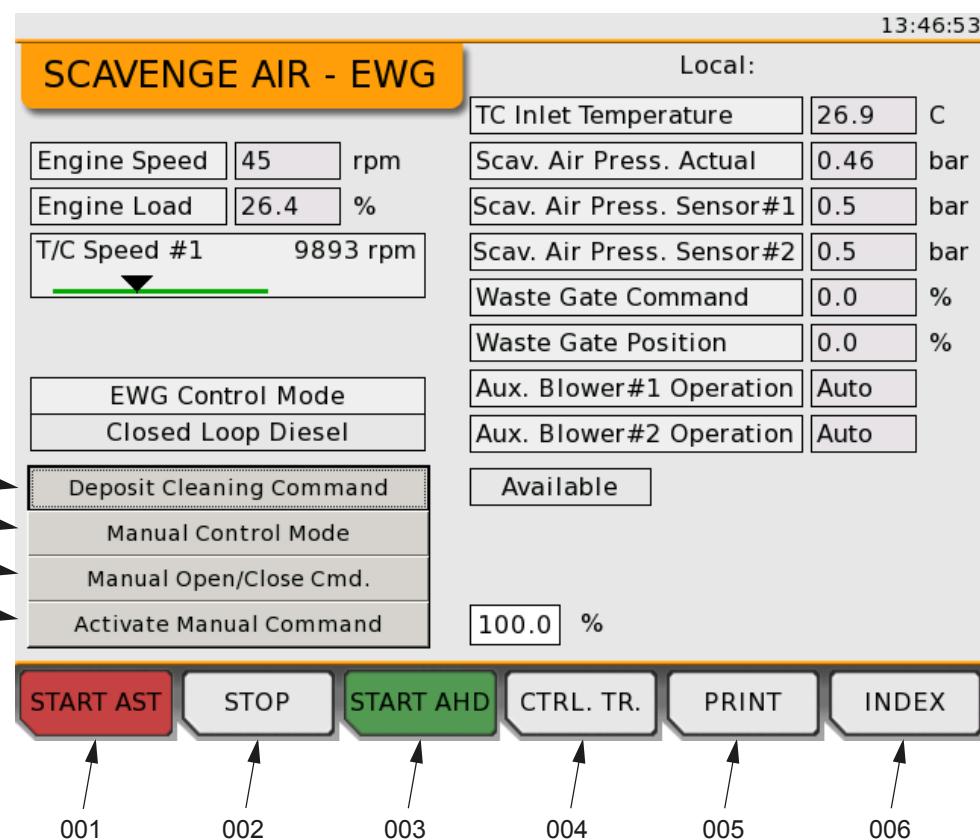


Tab 6-27 PILOT FUEL INJECTION

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page

6.7.29 LDU-20 page - PILOT FUEL PRESSURE

Fig 6-41 PILOT FUEL PRESSURE



Tab 6-28 PILOT FUEL PRESSURE

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to section 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Auto / Manual button	Changes between automatic and manual control mode of the pilot fuel pump
008	Start / Stop button	In manual mode: Starts and stops the pilot fuel pump NOTE: You only can start the pilot fuel pump, if the conditions that follow are OK: <ul style="list-style-type: none"> • Engine is running (usual operation or slow-down condition) • No failure of flow control valve • Usual range of pilot fuel inlet pressure • Usual range of servo oil pressure

6.7.30 LDU-20 page - SCAVENGE AIR - EWG (optional)

Fig 6-42 SCAVENGE AIR - EWG (optional)

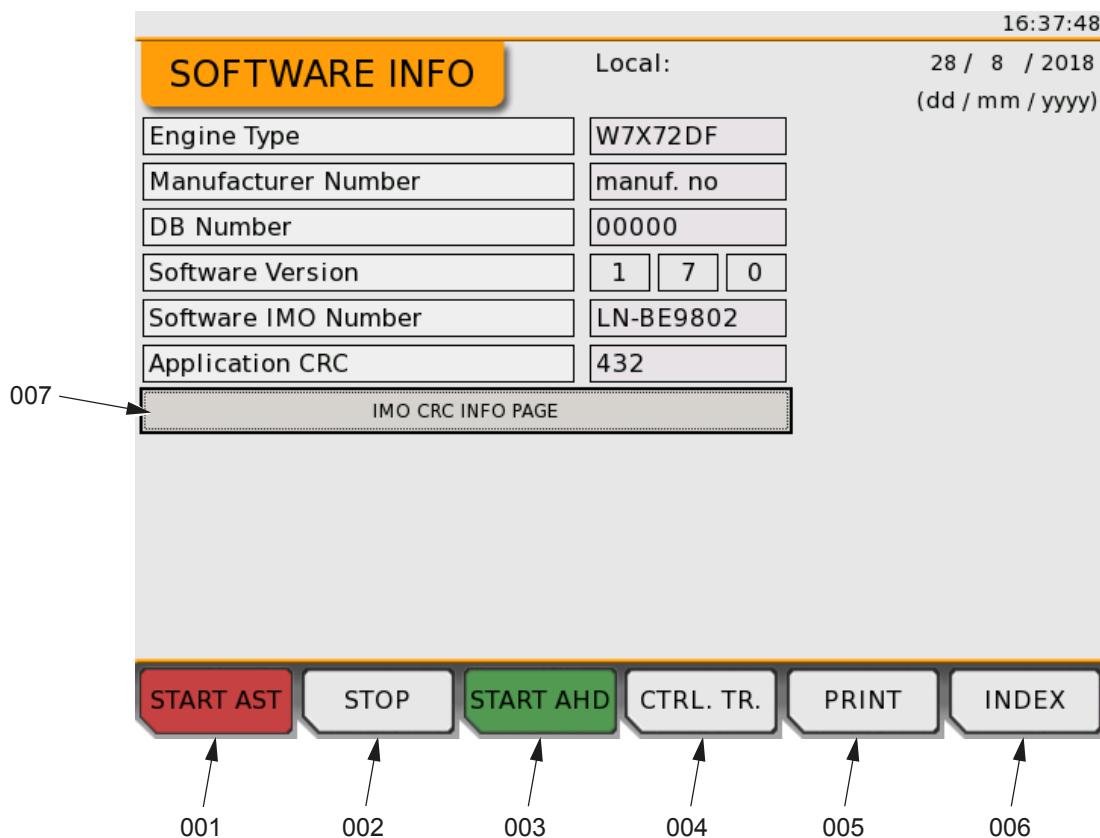
This LDU-20 page is only applicable, if the engine has a controllable exhaust waste gate.

Tab 6-29 SCAVENGE AIR - EWG (optional)

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to section 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	Activate Manual Command button	Activates the manual exhaust waste gate command. For a controllable exhaust waste gate valve manually adjust the opening of the valve from 0% (closed) to 100% (open).
008	Manual Open/Close Cmd. button	Sends a signal for a manual command to open / close the exhaust waste gate
009	Manual Control Mode button	Sends a signal for a mode change NOTE: You only can start the mode change, if the conditions that follow are OK: <ul style="list-style-type: none">• Engine at standstill• No shutdown signal active
010	Deposit Cleaning Command button	Starts the deposit cleaning procedure for the EWG, if button shows Available NOTE: For the cleaning procedure the exhaust waste gate valve opens 5% during 60 seconds. NOTE: You only can start the deposit cleaning, if the conditions that follow are OK: <ul style="list-style-type: none">• Engine operates in diesel mode• Engine load is less than 70%

6.7.31 LDU-20 page - SCREENSHOT

This function saves a screenshot of the page to a USB drive (if connected). The saved screenshot is a 640 x 480 pixel image in the xx.png format.

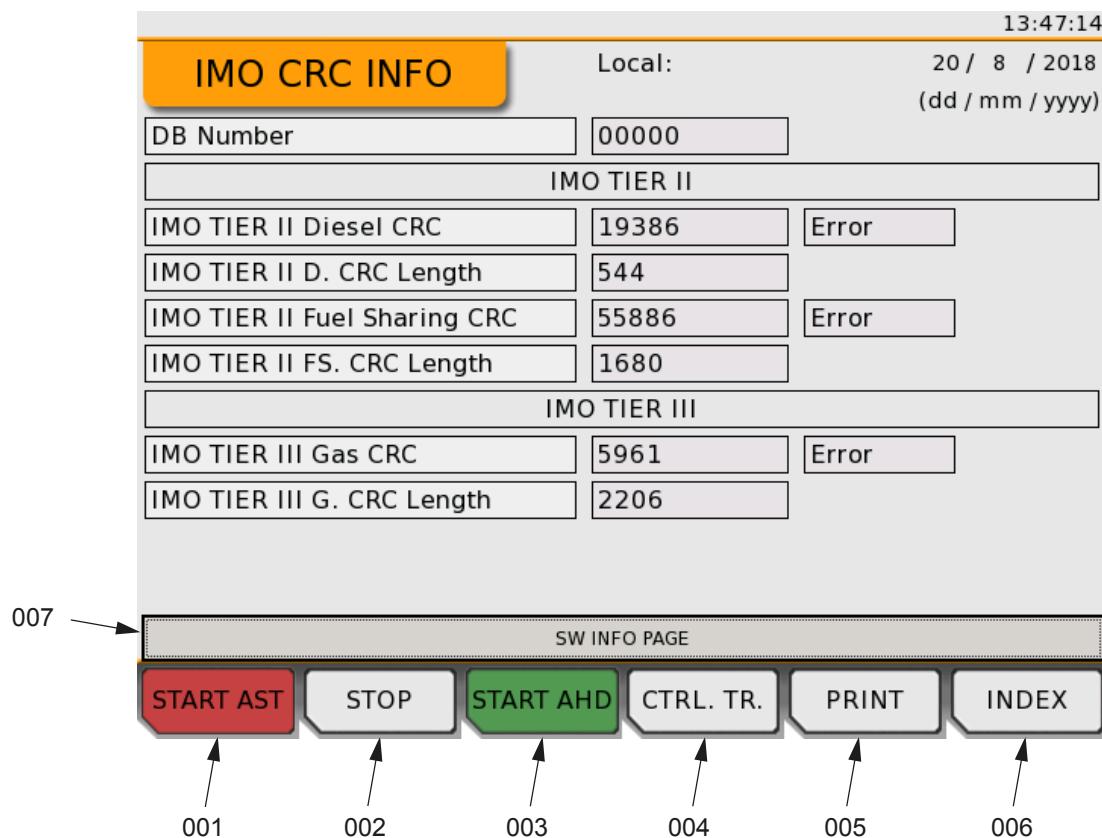

When you save a screenshot, the pop-up text Screenshot saved shows on the bottom right-hand corner of the display. If no USB drive is connected, or if there was an error during the save procedure to the USB drive, the pop-up message shows USB Mounting failed.

NOTE: When the export is done, disconnect the USB drive from the LDU-20. This prevents an unwanted LDU-20 shutdown because of a too high power consumption.

Page left intentionally blank

6.7.32 LDU-20 page - SOFTWARE INFO

Fig 6-43 SOFTWARE INFO



Tab 6-30 SOFTWARE INFO

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	IMO CRC INFO PAGE button	Opens the IMO CRC INFO page

6.7.33 LDU-20 page - IMO CRC INFO

Fig 6-44 IMO CRC INFO


Tab 6-31 IMO CRC INFO

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page
007	SW INFO PAGE button	Opens the software info page

NOTE: CRC - Cyclic Redundancy Check

6.7.34 LDU-20 page - SOFTWARE TOOLS

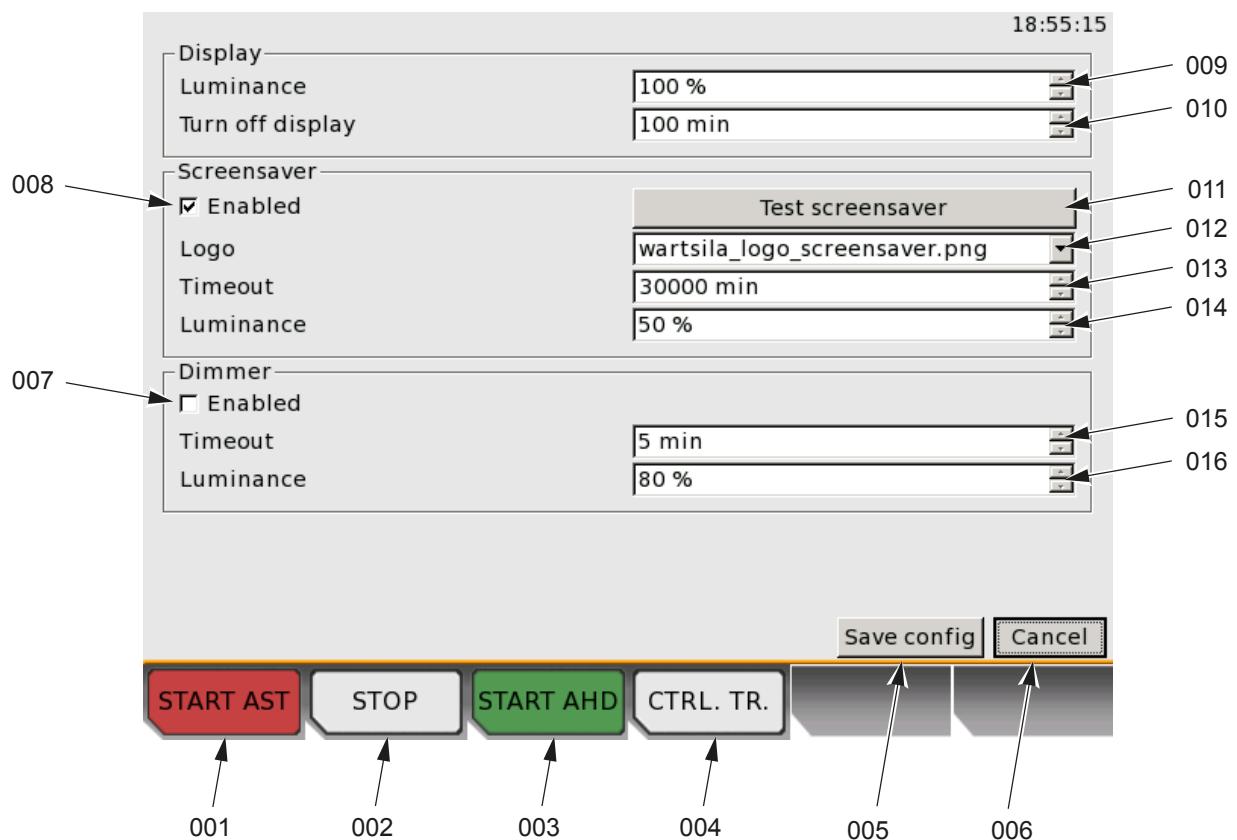
Fig 6-45 SOFTWARE TOOLS

Tab 6-32 SOFTWARE TOOLS

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	INDEX button	Opens the INDEX page
006	Mount / Unmount button	Handles the USB drive
007	Export button	Exports all log messages to a file on a USB drive (if connected)
008	Start Wizard button	Starts the partial upgrade wizard
009	Add User	Not used

6.7.35 LDU-20 page - SYSTEM STATUS

Fig 6-46 SYSTEM STATUS

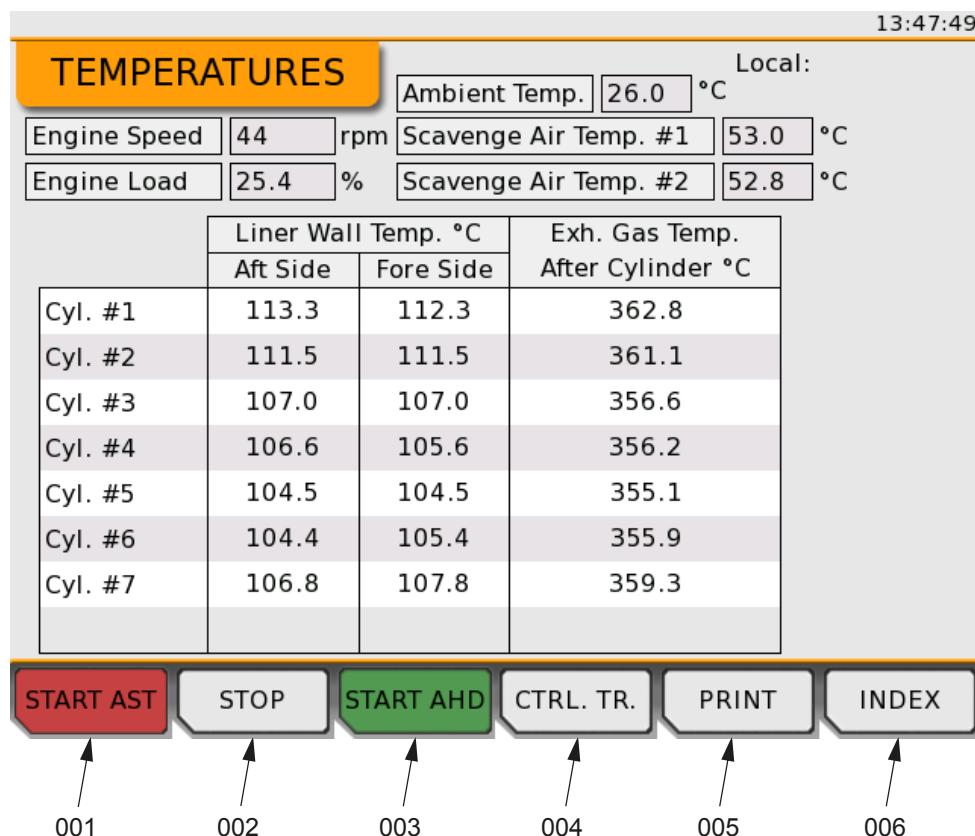


Tab 6-33 SYSTEM STATUS

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	INDEX button	Opens the INDEX page
006	Refresh button	Updates the module status list
007	Status indications for each module	<p>Shows either:</p> <ul style="list-style-type: none"> Initialization: Hardware module has been reset and bootloader has started the application Bootloader, staying in bootloader: Different version of application/configuration/DSP is found, SW download is necessary to synchronize the module with the rest of the system Pre-operational, synchronization: Module is booting up and waits for synchronization Pre-operational, ready: Module is booting up, everything set-up successfully and is ready to enter Operational state Operational: Module operates correctly, System software and application initialized successfully None: Module is set to OFF or disconnected from the CAN bus Stopped: Module is not configured correctly, system initialization has failed, state is transitioned from pre-operational state <p>The usual working cycle is as follows:</p> <ul style="list-style-type: none"> Reset Initialization Pre-operational --> Stopped --> Reset Operational --> Stopped --> Reset
008	Download button	Does a software download on the selected modules

6.7.36 LDU-20 page - SYSTEM SETTINGS

Fig 6-47 SYSTEM SETTINGS

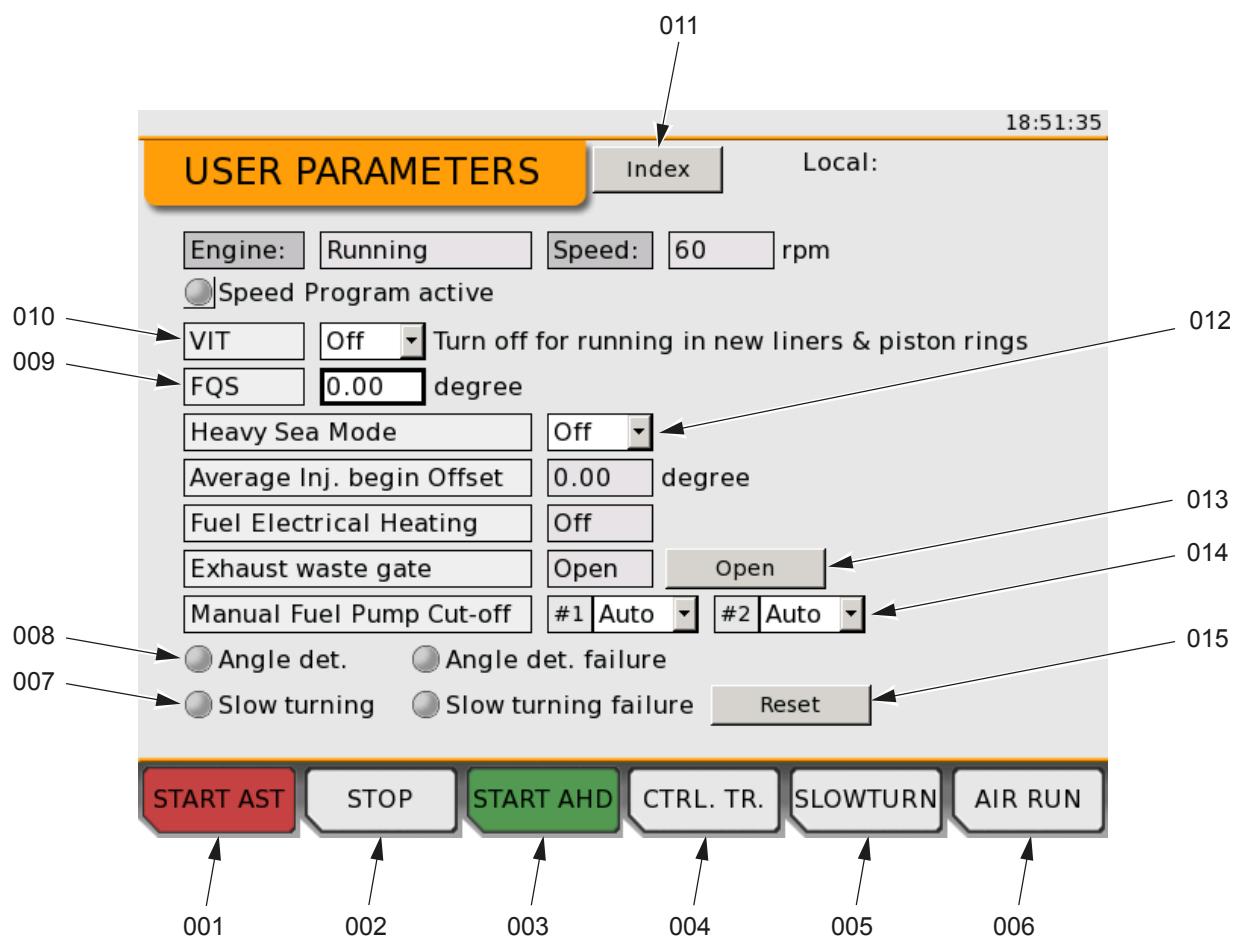


Tab 6-34 SYSTEM SETTINGS

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	Save config button	Saves the configuration settings
006	Cancel button	Cancels the changes and goes back to the last saved settings
007	Enable/Disable dimmer	Enables or disables the dimmer to decrease the display brightness after a specified period of inactivity
008	Enable/Disable screensaver	Enables or disables the screensaver functions
009	Display luminance setting	Adjusts the brightness of the display from 1% to 100%
010	Turn off display	Adjusts the time period to turn off the display after inactivity Set to between 1 min and 100 min Set to 0 to never turn off the display
011	Test screensaver button	Starts and stops the screensaver mode
012	Logo	Selects the picture to use in the screensaver mode
013	Timeout	Adjusts the time period to turn off the display after inactivity. Set to between 1 min and 100 min
014	Screensaver luminance	Adjusts the display brightness for the screensaver mode from 1% to 100%
015	Timeout	Adjusts the time period to dim the display after inactivity. Set to between 1min and 100 min
016	Dimmer luminance	Adjusts the display brightness for the dimmer mode from 1% to 100%
017	Save config button	Saves the configuration settings
018	Cancel button	Cancels the changes and goes back to the last saved settings

6.7.37 LDU-20 page - TEMPERATURES

Fig 6-48 TEMPERATURES

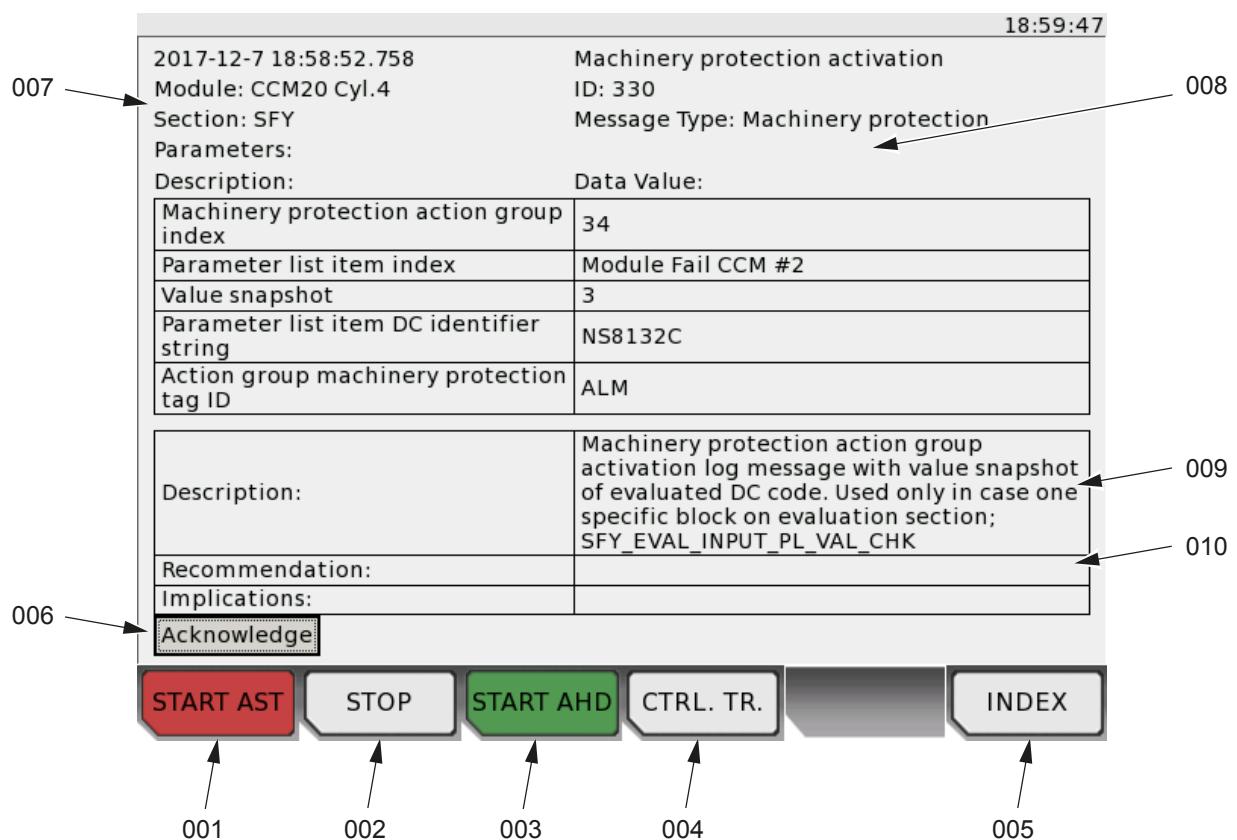


Tab 6-35 TEMPERATURES

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	PRINT button	Makes a screenshot of the current screen, refer to 6.7.31 LDU-20 page - SCREENSHOT
006	INDEX button	Opens the INDEX page

6.7.38 LDU-20 page - USER PARAMETERS

Fig 6-49 USER PARAMETERS

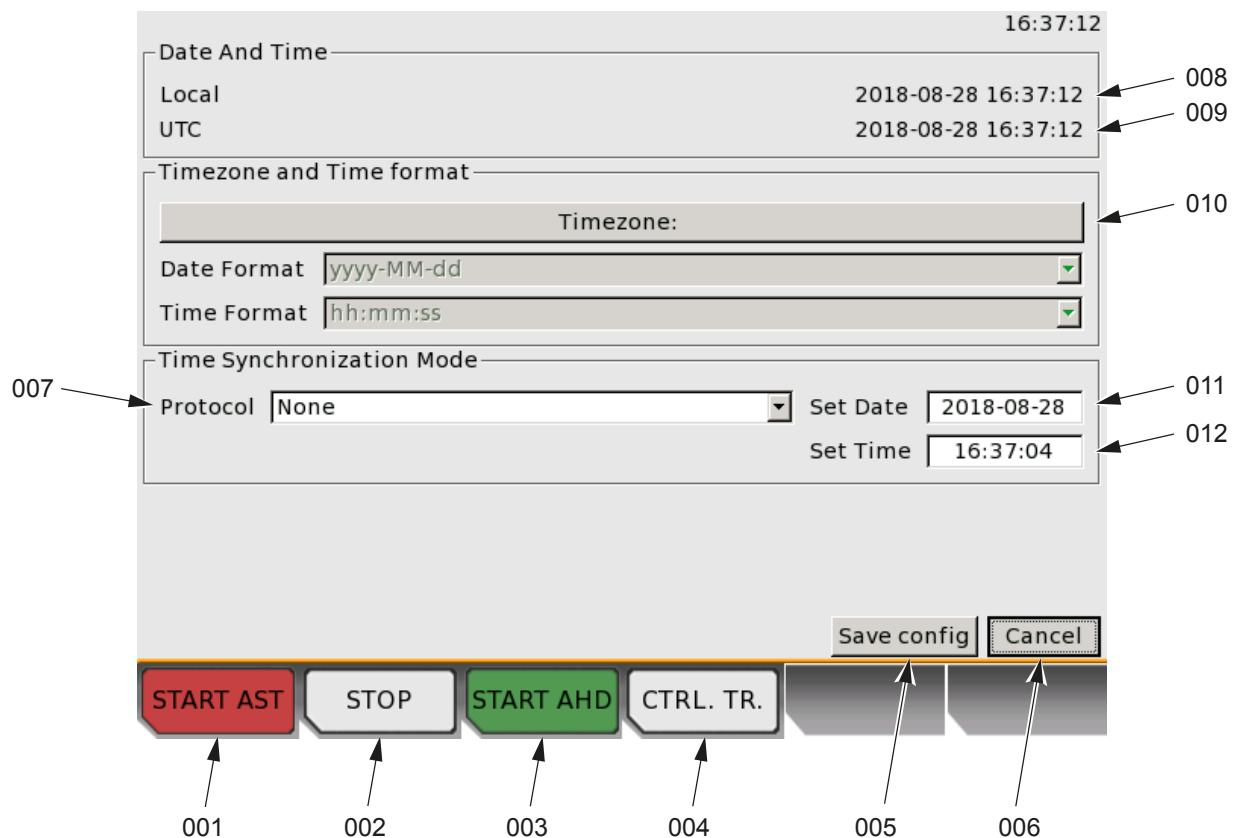


Tab 6-36 USER PARAMETERS

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	SLOWTURN button	Puts the engine in slow turning mode NOTE: The engine goes back to stopped mode after it has operated for some turns.
006	AIR RUN button	Starts the air run mode of the engine NOTE: The engine is in air run mode as long as you press the AIR RUN button.
007	Slow turning / Slow turning failure indications	Shows the slow turning status. When the slow turning mode is active, the related indicator is on. When there is a slow turning failure, the related indicator is on.
008	Angle determination / Angle determination failure indication	Shows the angle determination status. When the crank angle determination algorithm (ADA) mode is active, the related indicator is on. When there is a crank angle determination failure, the related indicator is on.
009	FQS	Manually adjust the parameter for the fuel quality setting (FQS) from -5° to $+5^\circ$ <ul style="list-style-type: none"> A negative correction angle makes an earlier injection start and thus increases the maximum firing pressure. A positive correction angle makes a later injection start and thus decreases the maximum firing pressure.
010	VIT button	Sets to ON and OFF the variable injection timing (VIT)
011	Index button	Opens the INDEX page
012	Heavy Sea Mode button	Sets to ON and OFF the heavy sea mode NOTE: This function sets the fuel rail pressure to a constant value to make the pressure control more stable. All injection valves are in operation.
013	EWG Open button	Opens and closes the exhaust waste gate NOTE: This button is only applicable for a binary exhaust waste gate.
014	Manual fuel pump cut off button	Sets the related fuel pump operation mode: <ul style="list-style-type: none"> Auto - automatic mode (usual operation) On - fuel pump is manually set to ON Off - fuel pump is manually set to OFF
015	Reset button	Resets a failure for angle determination or slow turning

6.7.39 LDU-20 page - LOG ENTRY DATA

Fig 6-50 LOG ENTRY DATA

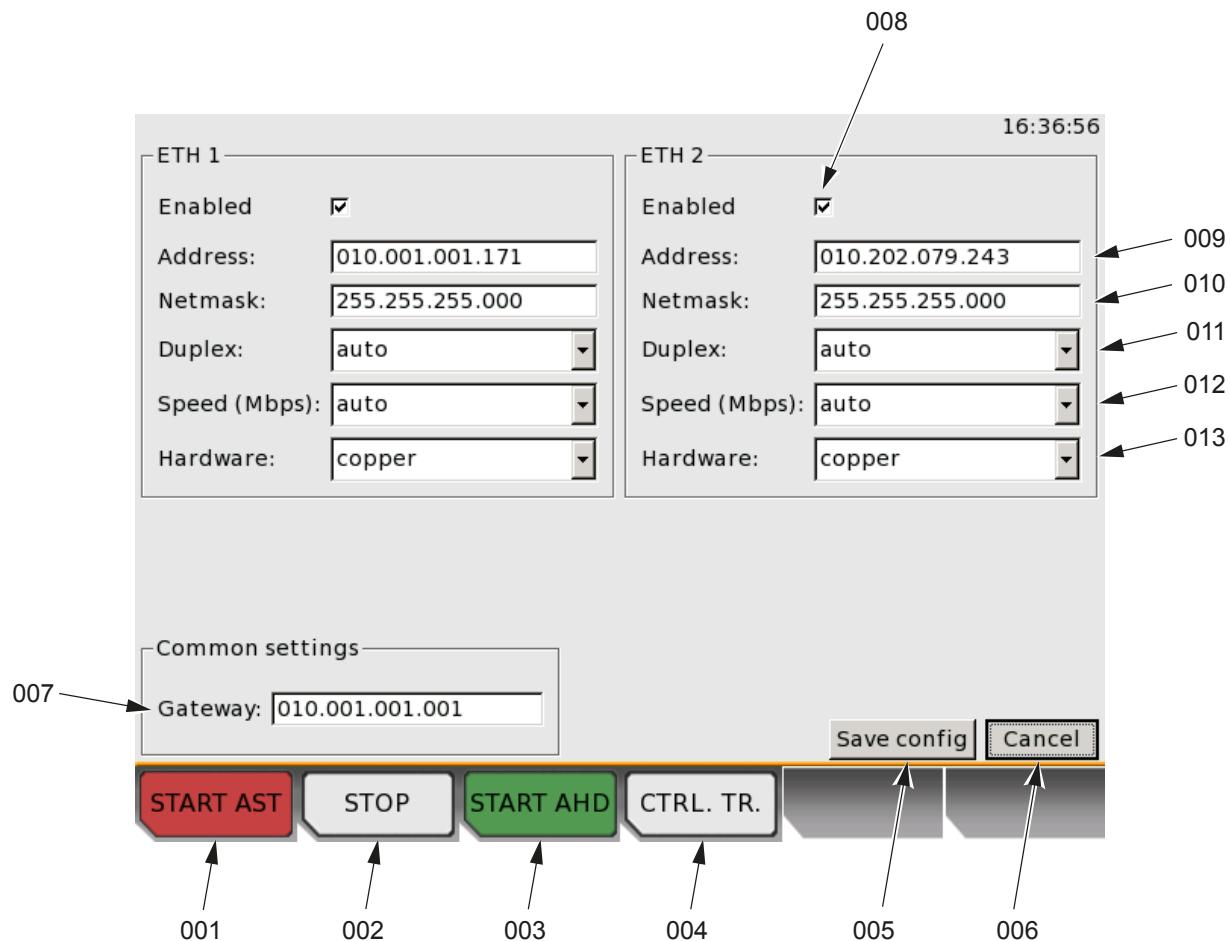

NOTE: Some data on this screen are only applicable to WinGD SW developers, eg the ID and status flag numbers.

Tab 6-37 LOG ENTRY DATA

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	INDEX button	Opens the INDEX page
006	Acknowledge button	Has no function
007	Module identifier	Shows the source module that sent this log entry
008	Message type	Shows the message type. Shows Info, Error, Event, Safety
009	Description	Shows general data about the log entry
010	Recommended action	Shows recommended action that the operator can do to solve the problem

6.7.40 LDU-20 page - DATE

Fig 6-51 DATE



Tab 6-38 DATE

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	Save config button	Saves the configuration settings
006	Cancel button	Cancels the changes and goes back to the last saved settings
007	Time Synchronization Mode button	Selects a Network Time Protocol (NTP). Not used
008	Local time	Shows the time offset from UTC
009	UTC time	Shows the coordinated universal time
010	Timezone button	Opens a list with all available time zones
011	Set Date field	Manually adjust the date setting
012	Set Time field	Manually adjust the time setting

6.7.41 LDU-20 page - ETHERNET

Fig 6-52 ETHERNET

Tab 6-39 ETHERNET

Item	Function	Effect
001	START AST button	Starts the engine in astern direction (for reversible engine)
002	STOP button	Stops the engine
003	START AHD button	Starts the engine in ahead direction
004	CTRL. TR. button	Sends a signal for a control transfer to this LDU-20
005	Save config button	Saves the configuration settings
006	Cancel button	Cancels the changes and goes back to the last saved settings
007	Gateway field	Manually configure the TCP/IP gateway address Default is 010.001.001.001
008	Enabled button	Manually enable or disable the ethernet ports ETH 1 = plug X31 ETH 2 = plug X32 The two ports must be enabled by default
009	Address field	Manually configure the TCP/IP address for each ethernet port: • LDU-20 Local • LDU-20 ECR
010	Netmask field	Manually configure the TCP/IP netmask
011	Duplex button	Manually configure the ethernet duplex mode • auto (default) • half • full
012	Speed (Mbps) button	Manually configure the ethernet speed • auto (default) • 10 • 100
013	Hardware button	Manually choose the ethernet hardware interface • copper (default) • fiber

Page left intentionally blank

7 Installation

7.1	Installation	360
-----	--------------------	-----

7.1 Installation

The Marine Installation Manual (MIM) gives data about the installation of the engine on the ship. The general installation topics in the MIM are as follows:

- Engine dimensions and masses
- Outline views
- Platform arrangement
- Engine seating
- Engine coupling
- Propulsion shaft earthing
- Engine stays
- Extinguishing system
- Auxiliary systems.

NOTE: The latest version of the Marine Installation Manual and the installation drawings are available on the WinGD website.
<https://www.wingd.com/>

8 Operation

8.1	Prepare the engine before start - general.....	362
8.2	Prepare the engine before start.....	364
8.3	Start the engine - general.....	372
8.4	Start the engine.....	374
8.5	Do checks during operation - general.....	376
8.6	Do checks during operation.....	378
8.7	Do regular safety checks.....	382
8.8	Maneuver the ship - general.....	386
8.9	Maneuver the ship.....	388
8.10	Change-over the diesel fuel - general.....	390
8.11	Change-over to and from gas - general.....	394
8.12	Change-over the diesel fuel automatically.....	396
8.13	Change-over from HFO to MDO manually.....	398
8.14	Change-over from MDO to HFO manually.....	400
8.15	Change-over to and from gas.....	402
8.16	Stop the engine - general.....	404
8.17	Stop the engine.....	406
8.18	Emergency stop the engine - general.....	408
8.19	Emergency stop the engine.....	410
8.20	Prepare the engine after stop - general.....	412
8.21	Prepare the engine for a short service break.....	414
8.22	Prepare the engine for standstill or for maintenance.....	416
8.23	LP-SCR system: Change Tier mode.....	420
8.24	Special running condition: Cylinder cut out.....	424
8.25	Special running condition: Turbocharger cut out.....	430

8.1 Prepare the engine before start - general

If you have done maintenance work on the engine, make sure that you have done the related function tests and the engine is ready for operation.

Do checks on the systems that follow to make sure that the engine is ready for engine start.

NOTE: For the specifications of the operating media refer to section [12.1 General for operating media](#).

8.1.1 Standard preparation

The systems that follow must be prepared for operation:

- **Cooling water system**

Make sure that the quality of the cooling water obeys the related specifications.

Make sure that cooling water is available at the engine connections 01 and/or 02 (cylinder cooling water inlet).

Make sure that the cooling water system is full.

- **Wash-water system**

Make sure that the quality of the wash-water obeys the related specifications.

Make sure that wash-water is available at the engine connection 11 (water for cleaning plant turbocharger and SAC inlet).

- **System oil system**

Make sure that the quality of the system oil obeys the related specifications.

Make sure that main lubricating oil is available at the engine connection 25 (main lubricating oil inlet).

Make sure that crosshead lubricating oil is available at the engine connection 30 (lubricating oil crosshead inlet).

Make sure that the lubricating oil system is full.

- **Cylinder oil system**

Make sure that the quality of the cylinder oil obeys the related specifications.

Make sure that cylinder oil is available at the engine connection 33 (cylinder oil inlet).

Make sure that the cylinder oil system is full.

- **Starting air system**

Make sure that the quality of the starting air obeys the related specifications in section [12.2 Compressed air](#).

Make sure that starting air is available at the engine connection 40 (starting air pipe inlet).

- **Scavenge air system**

Make sure that the quality of the scavenge air obeys the related specifications in section [12.3 Scavenge air](#).

Make sure that scavenge air is available at the turbocharger inlet.

- **Control air system**

Make sure that the quality of the control air obeys the related specifications in section [12.2 Compressed air](#).

Make sure that control air is available at the engine connection 49 (control air supply inlet).

Make sure that the control air system is full.

- **Fuel system**

Make sure that the quality of the fuel obeys the related specifications.

Make sure that fuel is available at the engine connection 45 (fuel inlet).

Make sure that the fuel system is full and the fuel can flow.

- **Exhaust gas system**

Make sure that the exhaust gas system is ready for operation.

- **Power supply system**

Make sure that the power supply system is ready for operation.

- **Leakage drain system**

Make sure that the leakage drain tanks of the plant have sufficient capacity.

For a DF engine, also the systems that follow must be prepared for operation:

- **Gas system**

Make sure that the quality of the gas obeys the related specifications in section [12.4 Gas fuels](#).

Make sure that gas is available at the engine connection 78 (gas supply inlet).

- **Pilot fuel system**

Make sure that the quality of the pilot fuel obeys the related specifications.

Make sure that pilot fuel is available at the engine connection 76 (supply unit fuel pilot valve inlet).

Make sure that the pilot fuel system is full and the pilot fuel can flow.

NOTE: You can start a DF engine only in diesel mode.

8.1.2 Preparation if components are defective

You also can operate the engine, if components of the engine are defective and you cannot repair the fault immediately. You have to do more preparations related to the defective component, refer to chapter 10 Troubleshooting.

Obey the limits of operation, if components of the engine are not in operation, refer to section [8.3 Start the engine - general](#).

8.2 Prepare the engine before start

Periodicity

Description

Engine start	
Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	1.0 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

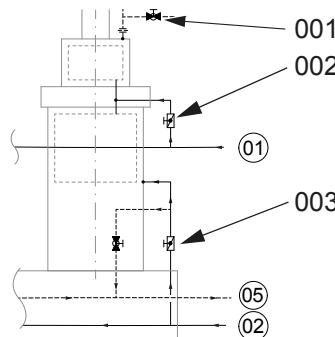
Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- Refer to section [8.1 Prepare the engine before start - general](#)


PROCEDURE

- 1** Make sure that there is no alarm indication.
- 2** Prepare the control system for operation.
 - 2.1** Set to ON the engine control system (ECS) and the remote control system (RCS).
 - 2.2** Set to ON all circuit breakers in the power supply box E85.
 - 2.3** Set to ON the control box for the cylinder oil filter (refer to the documentation of the manufacturer).

3 Prepare the cooling water system for operation.

3.1 For an engine with a bypass cooling water system (refer to [Figure 8-1](#)), and when the liner wall temperature is between 60°C and 90°C (for example when the engine is pre-heated or after engine full stop for a sufficient period), release the unwanted air with a high flow rate as follows:

Fig 8-1 Cooling water system with bypass cooling

Legend

001 Optional vent valve
002 Shut-off valve
003 Shut-off valve

01 Connection 01 (cylinder cooling water inlet)
02 Connection 02 (cylinder liner CW inlet)
05 Connection 05 (cylinder CW drain outlet)

3.1.1 Close all shut-off valves (002) in the cylinder cover supply pipes (engine connection 01).

NOTE: This increases the pressure and thus the flow rate at the engine connection 02.

3.1.2 Let the cooling water flow through the cylinder liners for approximately ten minutes.

3.1.3 Close the shut-off valves (003) in the cylinder liner supply pipes of the first half of cylinders (for example cylinder 1 to 3 for a 5 or 6 cylinder engine).

NOTE: This increases again the pressure and thus the flow rate to the other cylinders.

3.1.4 Let the cooling water flow through the other cylinder liners for approximately ten minutes.

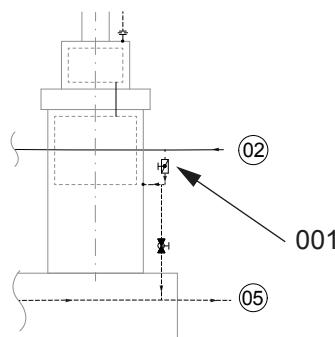
3.1.5 Open the shut-off valves (003) in the cylinder liner supply pipes of the first half of cylinders.

3.1.6 Do [Step 3.1.3](#) to [Step 3.1.5](#) again for the second half of cylinders (for example for cylinder 4 and 5 or for cylinder 4 to 6).

3.1.7 Open all shut-off valves (002) in the cylinder cover supply pipes.

3.1.8 If there is unwanted air in the cooling water and the optional vent valve (001) is installed, do as follows:

3.1.8.1 Put an applicable container under the vent valve (001).


3.1.8.2 Carefully open the vent valve (001) until only cooling water flows out of the vent valve (001).

3.1.8.3 Close the vent valve (001).

3.1.8.4 Discard the hot cooling water correctly.

3.2 For an engine without a bypass cooling water system (refer to [Figure 8-2](#)), and when the liner wall temperature is between 60°C and 90°C (for example when the engine is pre-heated or after engine full stop for a sufficient period), release the unwanted air with a high flow rate as follows:

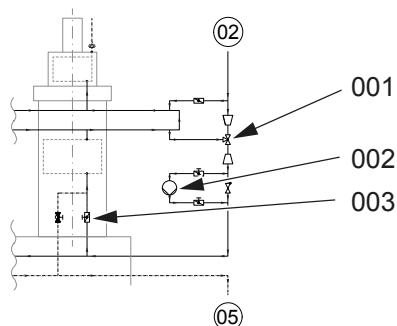
Fig 8-2 Cooling water system without bypass cooling

Legend

001	Shut-off valve	05	Connection 05 (cylinder cooling water drain outlet)
02	Connection 02 (cylinder liner cooling water inlet)		

3.2.1 Close the shut-off valves (001) in the cylinder liner supply pipes of the first half of cylinders (for example cylinder 1 to 3 for a 5 or 6 cylinder engine).

NOTE: This increases the pressure and thus the flow rate to the other cylinders.


3.2.2 Let the cooling water flow through the other cylinder liners for approximately ten minutes.

3.2.3 Open the shut-off valves (001) in the cylinder liner supply pipes of the first half of cylinders.

3.2.4 Do [Step 3.2.1](#) to [Step 3.2.3](#) again for the second half of cylinders (for example for cylinder 4 and 5 or for cylinder 4 to 6).

3.3 For an engine with an internal circulation cooling water system (with circulation pump and temperature control valve, refer to [Figure 8-3](#)), and when the liner wall temperature is between 60°C and 90°C (for example when the engine is pre-heated or after engine full stop for a sufficient period), release the unwanted air with a high flow rate as follows:

Fig 8-3 Cooling water system with circulation

Legend

001	Temperature control valve	02	Connection 02 (cylinder liner cooling water inlet)
002	Circulation pump	05	Connection 05 (cylinder cooling water drain outlet)
003	Shut-off valve		

3.3.1 Close the shut-off valves (003) in the cylinder liner supply pipes of the first half of cylinders (for example cylinder 1 to 6 for a 12 cylinder engine).

NOTE: This increases the pressure and thus the flow rate to the other cylinders.

3.3.2 Let the cooling water flow through the other cylinder liners for approximately ten minutes.

3.3.3 Open the shut-off valves (003) in the cylinder liner supply pipes of the first half of cylinders.

3.3.4 Do [Step 3.3.1](#) to [Step 3.3.3](#) again for the second half of cylinders (for example cylinder 7 to 12 for a 12 cylinder engine).

3.4 Set all valves to their correct positions for operation.

3.5 Release the unwanted air in the cooling water pipes and the scavenge air coolers at the related vent valves.

3.5.1 Carefully open the first vent valve.

3.5.2 After water that has no air flows out, close the vent valve.

3.5.3 Do [Step 3.5.1](#) and [Step 3.5.2](#) again with the other vent valves.

3.6 Make sure that the values that follow are in the permitted range:

- Pressure in the supply pipe of the cylinder cooling water
- Temperature in the supply pipe of the cylinder cooling water
- Pressure in the cooling water supply pipe of the scavenge air cooler (SAC)
- Temperature in the cooling water supply pipe of the SAC.

- 4 Prepare the air systems for operation.
 - 4.1 Set all valves to their correct positions for operation.
 - 4.2 Drain the air system at the related drain valves.
 - 4.2.1 Open the first drain valve.
 - 4.2.2 After no more water flows out from the valve, close the drain valve.
 - 4.2.3 Do [Step 4.2.1](#) and [Step 4.2.2](#) again with the other drain valves.
 - 4.3 Make sure that the values that follow are in the permitted range:
 - Pressure in the supply pipe to the air springs
 - Pressure in the supply pipe to the starting air system.
 - 4.4 Set the auxiliary blowers to AUTO.
- 5 Prepare the lubricating oil systems for operation.
 - 5.1 Set all valves to their correct positions for operation.
 - 5.2 If it is necessary to have servo oil pressure, set to ON the servo oil service pump.
 - 5.3 Make sure that the values that follow are in the permitted range:
 - Temperature in the oil supply pipes
 - Pressure in the oil supply pipes
 - Pressure before the torsional vibration damper (if applicable)
 - Pressure in the servo oil rail (only pressure of servo oil service pump)
 - Pressure in the distributor pipe (mini-rail)
 - Pressure at the turbocharger (if applicable)
 - 5.4 Set to ON the cylinder oil system.
- 6 Prepare the exhaust gas system for operation.
 - 6.1 If necessary (for example after maintenance), do a check of the exhaust valves for correct function.
 - 6.1.1 Manually open and close the exhaust valve of cylinder No. 1.
 - 6.1.2 Do [Step 6.1.1](#) for a minimum of four times.
 - 6.1.3 Do [Step 6.1.1](#) and [Step 6.1.2](#) again with the other cylinders.
 - 6.1.4 If an exhaust valve does not function correctly, find the cause and repair the fault.
 - 6.2 Make sure that all exhaust valves are closed.
- 7 Prepare the fuel system for operation.
 - 7.1 Set all valves to their correct positions for operation.
 - 7.2 Make sure that the selected fuel supply is in the permitted range.

- 8 For a DF engine, prepare the gas system for operation.
 - 8.1 Do a visual check of the gas pipes for damage. If damage is found, replace the defective gas pipes immediately.
 - 8.2 Do the gas related checks. If alarms or failure messages occur, repair the related item.
 - 8.3 Set all valves to their correct positions for operation.
 - 8.4 Make sure that the selected gas supply is in the permitted range.
- 9 For a DF engine, prepare the pilot fuel system for operation.
 - 9.1 Set all valves to their correct positions for operation.
 - 9.2 Make sure that the selected pilot fuel supply is in the permitted range.
- 10 Carefully open all indicator valves on the cylinder covers.
NOTE: This makes it possible, that fluids can come out of the cylinder, if the pistons move. Fluids can be in a cylinder, if there are leaks in the water, oil, or fuel system.

WARNING

Injury hazard: Before you operate the turning gear, make sure that no personnel are near the flywheel, or in the engine.

- 11 Engage and start the turning gear.
- 12 If the engine has been stopped for more than approximately five days, start a manual pre-lubrication procedure.
NOTE: This makes sure, that the cylinders get sufficient lubrication before start-up.
- 13 Turn the engine a minimum of three full turns.
- 14 If water, oil, or fuel comes out of the indicator valves, do a check of the related components that follow and repair if necessary:
 - Cylinder liner
 - Cylinder cover
 - Piston
 - Injection valve.
- 15 Do a check of all the running gears for correct operation.
- 16 Stop and disengage the turning gear and lock the lever.
- 17 If you have started the servo oil service pump, set to OFF the servo oil service pump.
- 18 On the starting air shut-off valve turn the hand-wheel to the position AUTO.
- 19 Close the indicator valves on the cylinder covers.
- 20 Make sure that all doors on the monoblock column are closed and locked.
- 21 Start the slowturning of the engine on the local control panel.
NOTE: The engine will slowly turn at approximately 5 rpm to 10 rpm.
- 22 Tell personnel on the bridge that the engine is prepared for operation.

CLOSE UP

- None

Page left intentionally blank

8.3 Start the engine - general

8.3.1 Usual start conditions

The engine must be prepared for operation.

All the auxiliary systems must be in correct operation related to section [8.2 Prepare the engine before start](#).

You can start the engine from the locations that follow:

- At the bridge or engine control room (ECR) with remote control
- At the backup control panel in the ECR
- At the local control panel of the engine.

Obey the rules for operation related to barred speed ranges:

- Do not continuously operate the engine in a barred speed range.
- If you change the speed, go through the barred speed range as quickly as possible.

NOTE: It is possible that the engine has more than one barred speed range (for example if the axial vibration damper becomes defective, or one or more cylinders are not in operation). You can find data about the barred speed ranges near the telegraph on the bridge, near the local control panel, and in the related documentation of vibration calculations.

8.3.2 Start conditions - limits

With some limits you also can start the engine, if parts of the engine are not prepared for operation, for example:

- One or more turbochargers are defective.
- One or more cylinders are unserviceable.
- The cooling water flow is decreased.

8.3.2.1 One or more turbochargers are defective

To prevent damage to the engine, make sure that you know the limits that follow:

- For an engine with two turbochargers and one turbocharger is defective:
 - Make sure that the exhaust gas temperature at the serviceable turbocharger inlet is less than the maximum permitted temperature.
 - The maximum power output of the engine is approximately 50% related to the power of the serviceable turbocharger.

- For an engine with three turbochargers and one or two turbochargers are defective:
 - Make sure that the exhaust gas temperature at the serviceable turbochargers inlet is less than the maximum permitted temperature.
 - If one turbocharger is defective, the maximum power output of the engine is approximately 66% related to the power of the serviceable turbochargers.
 - If two turbochargers are defective, the maximum power output of the engine is approximately 33% related to the power of the serviceable turbocharger.
 - For a DF engine, the engine can operate in diesel mode, gas mode, or fuel sharing mode.
- If all turbochargers of the engine are defective:
 - The maximum power output of the engine is between 10% (as a minimum) to approximately 15% related to the power of the auxiliary blowers.

8.3.2.2 One or more cylinders are unservicable

Obey the rules for operation, if one or more cylinders are unserviceable:

- Operate the engine only at decreased load.
- It is possible that the turbochargers surge. This makes a loud sound and causes large differences in the scavange air pressure. In this condition decrease the load of the engine sufficiently.
- It is possible that the engine had stopped in a position from which it cannot start. In this condition start the engine momentarily in the opposite direction to get the crankshaft to a different position.

8.3.2.3 Cooling water flow is decreased

If the cooling water flow is decreased, operate the engine only at decreased load.

8.4 Start the engine

Periodicity

Description

Engine start	
Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	0.5 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- Refer to section [8.3 Start the engine - general](#)

PROCEDURE

- 1 If there is a clutch coupling between engine and propeller, do the steps that follow:
 - 1.1 Engage the clutch coupling.
 - 1.2 Keep the clutch coupling engaged during operation to prevent damage to the engine.
- 2 Select the applicable control panel.
- 3 Start the auxiliary blowers.
- 4 Set the minimum fuel injection quantity on the related control panel to 30%.
- 5 Push the button START AHD or START AST to start the engine.
NOTE: The ECS starts an automatic pre-lubrication sequence with a specified number of pulses.
NOTE: The ECS increases the engine speed.
- 6 If new cylinder liners or piston rings were installed, do a running-in, refer to section [9.7 Running-in of new components](#).
- 7 If necessary, slowly adjust the fuel injection quantity.
NOTE: The ECS changes the engine speed.

CLOSE UP

- None

8.5 Do checks during operation - general

During operation, do regular checks of the operating values, refer to section [8.6 Do checks during operation](#). This prevents damage to the engine if malfunctions occur.

Compare the values with those given in the acceptance records. This gives a good indication of the engine performance. If there are unusual differences in the values, find the causes and repair the faults.

Do not open the covers of the rail unit during engine operation.

NOTE: For data about regular maintenance work refer to the Maintenance Manual.

When the engine is at standstill, do also regular checks of the alarm and safety system, refer to section [8.7 Do regular safety checks](#). This prevents damage to the engine if settings have changed or malfunctions occur.

Page left intentionally blank

Operation Manual

Do checks during operation

8.6 Do checks during operation

Periodicity

Description

Unscheduled		
Duration for performing preliminary requirements		0.0 man-hours
Duration for performing the procedure		1.0 man-hours
Duration for performing the requirements after job completion		0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- The engine is running.

PROCEDURE

- 1** Make sure that the engine control system indicates no alarm signals.
- 2** If there are alarm signals, find the cause and repair the fault.
- 3** Listen to the engine for unusual noise. If you hear unusual noise, find the cause and repair the fault.
- 4** If you cannot find the cause of the unusual noise, stop the engine as soon as possible. Find the cause and repair the fault.
- 5** Do daily the checks and the servicing that follow:
 - 5.1** Do a check of the condensation collectors through the sight glasses of the SAC and the water separator for free flow. If there is a blockage, clean the condensation collector.
 - 5.2** Release the unwanted air from the cooling water system.
- 6** Do a check of the exhaust gas for dark smoke. If there is dark smoke, find the cause and repair the fault.
- 7** Do regular checks of the items that follow:
 - Levels of fuel, oil and water tanks
 - Temperatures of oil, cooling water, bearings and exhaust gas
 - Pressures of oil, cooling water and control air
 - Pressure difference of the oil filter
 - For a DF engine, also pressure of gas.
- 8** If there are unusual operating values, find the cause and repair the fault.
- 9** Do regular checks of pipes for leaks. If there are leaks, find the cause and repair them.
- 10** Do a careful check of the dirty oil drain pipes for differences in temperature.
NOTE: Different temperatures show a blockage in the pipes.
- 11** If there is an unusual temperature difference, remove the blockage of the pipe as soon as possible.
- 12** Do weekly the checks and the servicing that follow:
 - 12.1** Do a check of the quality of the cooling water, refer to the instructions of the inhibitor manufacturer.
 - 12.2** Do a careful check of the temperature of the pipe upstream of the starting air valves. If a pipe is too hot, repair the related starting air valve.
 - 12.3** Do a check of the fuel pump cover for oil leaks. If necessary, replace the O-ring.
 - 12.4** Drain the bottle of the filter in the control air supply.
 - 12.5** Do a check of the electrical installations, connectors and modules.

13 For a DF engine, do also the checks that follow:

- 13.1** Do regular checks (leak checks) of the gas piping system, refer to the related data or documentation.
- 13.2** Do daily a check of the cylinder compression pressures on the related control panel.
- 13.3** If there is a drift that is too high or if there is a related alarm message, clean or replace the related pressure transmitter, refer to the Maintenance Manual.
- 13.4** Do daily a check of the cylinder liner wall temperatures on the related control panel.
- 13.5** If there is a drift that is too high or if there is a related alarm message, release the unwanted air from the cooling water, for an engine with bypass cooling water system refer to section [10.4 Bleed the cooling water system of the liner wall](#).

CLOSE UP

- None

Page left intentionally blank

8.7 Do regular safety checks

Periodicity

Description

Months	3
Unscheduled	After maintenance work
Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	4.0 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
Pressure calibration hand-pump	94050		1
Smoke test instrument	N/A		1
Ampere meter	N/A		1

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

CAUTION

Equipment Hazard: Leaks can cause faults in the engine control systems and damage to engine components. Leaks that are found during the engine control system checks must be repaired to prevent damage to equipment.

PRELIMINARY OPERATIONS

- The engine must be prepared for operation, refer to section [8.1 Prepare the engine before start - general](#)
- The engine must be stopped.

PROCEDURE

- 1 Make sure that the remote control system (RCS), the engine safety system (ESS), and the alarm and monitoring system (AMS) are set to ON.
- 2 Do a check of the EMERGENCY STOP buttons:
 - 2.1 On the control panel in the engine control room (ECR), push the EMERGENCY STOP button.
 - 2.2 Make sure that the pressure control and safety valve 10-5562_E0_5 is electrically operated (ie the coil is energized).
NOTE: This causes an alarm (M/E Emergency Stop) in the AMS.
 - 2.3 Make sure that the EMERGENCY STOP button is deactivated again.
 - 2.4 Do [Step 2.1](#) to [Step 2.3](#) again with the EMERGENCY STOP buttons on the local control panel and on the bridge.
- 3 Do a check of the all the pressure switches.
 - 3.1 Carefully remove the first pressure switch.
NOTE: The stop valve in the connection closes automatically.
 - 3.2 Connect the pressure calibration hand-pump to the pressure switch.
 - 3.3 Operate the pressure calibration hand-pump to increase the pressure to more than the SHD pressure of the pressure switch. Repeat this step for each pressure switch.
NOTE: For the related SHD pressure refer to section [\[section not applicable for this engine\]](#)
 - 3.4 Make sure that the pressure switch opens.
 - 3.5 Decrease the pressure to less than the SHD pressure.
 - 3.6 Make sure that the pressure switch closes at the related pressure.
 - 3.7 If the pressure switch does not close, find the cause and repair the fault.
 - 3.8 Disconnect the pressure calibration hand-pump from the pressure switch.
 - 3.9 Install the pressure switch.
 - 3.10 Do [Step 3.1](#) to [Step 3.9](#) again for the other pressure switches.
 - 3.11 To do a test of the passive failures, temporary disconnect the sockets of the switches that follow:
 - PS1101S
 - PS2002S
 - PS4341S
 - FS2521-nnS
- 4 Do a function check of the oil mist detector:
 - 4.1 Remove a plug from the junction box, or start the Test Menu in the control unit.
 - 4.2 Connect the smoke test instrument to the test connection of a sensor.
 - 4.3 Simulate oil mist to activate an alarm in the safety system.
 - 4.4 If removed, install the plug on the junction box.
- 5 For a DF engine, do a calibration and a function check of the gas detectors, refer to the related documentation of the manufacturer.
- 6 Do a check of the auxiliary blowers:
 - 6.1 Make sure that main bearing oil is available.
 - 6.2 If applicable, set to ON the turbocharger oil supply.
 - 6.3 Do a check of the applicable lubricating oil pressure, refer to section [\[section not applicable for this engine\]](#).

- 6.4** Set to ON the electrical power supply for each auxiliary blower.
- 6.5** Get control at the local control panel.
- 6.6** Start the auxiliary blowers.
 - 6.6.1** Make sure that the auxiliary blower 1 starts immediately.
 - 6.6.2** Make sure that the auxiliary blower 2 starts after an interval of between 3 to 6 seconds.
- 6.7** Make sure that the two auxiliary blowers turn in the correct direction.
- 6.8** Stop the auxiliary blowers.
- 6.9** Get control at the control panel in the engine control room (ECR).
- 6.10** Do [Step 6.6](#) to [Step 6.8](#) again from the control panel in the ECR.

7 Do a check of the auxiliary blowers from the control panel in the engine control room (ECR):

- 7.1** On the MCM-11, disconnect terminal X33.
- 7.2** Start the auxiliary blowers.
- 7.3** Make sure that the command and feedback of auxiliary blowers continue to operate.

NOTE: If the auxiliary blowers do not operate, do a check of the wiring to the starter box.
- 7.4** Stop the auxiliary blowers.
- 7.5** On the MCM-11, connect terminal X33.
- 7.6** On the IOM-10, disconnect terminal X11.
- 7.7** Start the auxiliary blowers. Command and feedback of auxiliary blowers must continue to operate.
- 7.8** If the auxiliary blowers do not operate, do a check of the wiring to the starter box.
- 7.9** Stop the auxiliary blowers.
- 7.10** On the IOM-10, connect terminal X11.
- 7.11** Get control at the local control panel.
- 7.12** Do [Step 7.1](#) to [Step 7.10](#) again from the local control panel.

8 Do a check of the turning gear interlocks:

- 8.1** Make sure that the turning gear is engaged.
- 8.2** Make sure that the pressure transmitter PT5017C and the switch ZS5016C do not operate.

NOTE: The pressure transmitter PT5017C operates at 2.0 bar.
- 8.3** Make sure that the indication Turning Gear Engaged shows on each control panel (in the engine control room and at the local maneuvering stand).
- 8.4** Make sure that no starting air is in the starting air supply pipe:
 - 8.4.1** Make sure that the starting air shut-off valve 30-4325_E0_1 is in the position AUTO.
 - 8.4.2** Disconnect the plugs on the two solenoid valves CV7013C and CV7014C.
 - 8.4.3** Open the two drain valves in the starting air supply pipe.
- 8.5** Get control at the local control panel.
- 8.6** Select the button START AHD.
- 8.7** Make sure that the indication Turning Gear Engaged is shown on each control panel.
- 8.8** Make sure that no start command is released.

- 8.9 Do **Step 8.1** to **Step 8.8** again from the locations that follow:
 - Control panel in the engine control room (ECR)
 - Remote control.
- 8.10 Make sure that the supply of starting air to the starting air supply pipe is possible:
 - 8.10.1 Close the two drain valves in the starting air supply pipe.
 - 8.10.2 Connect the plugs on the two solenoid valves CV7013C and CV7014C.
- 8.11 Disengage the turning gear.
NOTE: On each control panel, the indication changes to Turning Gear Disengaged. The start command is canceled in the remote control.

9 If there is a malfunction, find the cause and repair the fault, before you start the engine.

CLOSE UP

- None

8.8 Maneuver the ship - general

Maneuvering is the operation between leaving a port and approaching to port. Maneuvering also includes all changes during usual operation, for example changing of direction.

The conditions as follows affect the speed of the ship:

- Sailing into strong head winds
- Sailing in heavy seas
- Sailing in shallow water
- Unwanted heavy growth on the hull.

The governor increases the fuel quantity to keep the speed of the ship constant. The increase in the fuel injection quantity shows on the control panel.

8.8.1 Usual maneuvering

The maneuvering range is the speed range between FULL AHEAD and FULL ASTERN. This range is usually divided into four maneuvering steps with related given speeds in each direction.

Load changes must be done slowly to let the piston rings adapt the new conditions. This also prevents increased wear and contamination of the piston rings and the cylinder liners.

The total time to increase the engine load from leaving port to sea speed must not be less than 30 minutes.

The total time to decrease the engine load from sea speed to port approach must not be less than 15 minutes.

Usual time for these two maneuvering operations is between 40 and 45 minutes.

You can do maneuvering operations from the locations that follow:

- At the bridge or engine control room (ECR) with remote control
- At the backup control panel in the ECR
- At the local control panel of the engine.

NOTE: Maneuvering from the local control panel does not decrease the quality or the safety of the engine operation.

8.8.2 Maneuvering at overload

The engine should only be operated at overload (110% of CMCR power) during sea trials and when there is an authorized representative of the engine builder on board the ship. The limit for operation of the engine at overload is a maximum of one hour each day (refer also to section [3.3 The relation between engine and propeller](#)).

During operation at overload, you must carefully monitor the engine. If there are unusual indications, you must decrease the load (power).

The load indication (fuel injection quantity) and the exhaust gas temperature upstream of the turbocharger show the engine load.

The cooling water temperatures must stay in their usual ranges.

The maximum permitted position of the load indication (fuel injection quantity) is given in the acceptance records. The adjustments are only permitted to show the CMCR power during sea trials with an overspeed of 104% to 108% of CMCR power.

8.9 Maneuver the ship

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
--	---------------

Duration for performing the procedure	0.5 man-hours
---------------------------------------	---------------

Duration for performing the requirements after job completion	0.0 man-hours
---	---------------

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- None

PROCEDURE

- 1 Select the applicable control console.
- 2 To change the speed, do the steps that follow:
 - 2.1 Use the rotary button to select the fuel command button.
 - 2.2 Turn the rotary button to set the related fuel injection quantity.
NOTE: Refer to the time limits given in section [8.8 Maneuver the ship - general](#).
- 3 To operate the engine in the opposite direction, do the steps that follow:
 - 3.1 Use the rotary button to select the fuel command button.
 - 3.2 Turn the rotary button to set the fuel injection quantity to approximately 30%.
 - 3.3 Push the related button START AHD or START AST.
NOTE: After some minutes the engine operates in the opposite direction.

CLOSE UP

- None

8.10 Change-over the diesel fuel - general

When you change from heavy fuel oil (HFO) to marine diesel oil (MDO) or back, you must keep the thermal stresses of the related fuel components as low as possible. Thermal stress occurs because of the large temperature changes. Too fast change of the temperature can cause damage to the fuel pump plungers and can cause leakages in the fuel pipes.

During the change-over procedure the temperature of the fuel must not change more than 2°C each minute. This prevents damage to the system, specially when you do the procedure frequently. The small change rate is also because of the large difference of viscosity between HFO and MDO/MGO.

You can do a change-over of the fuel only when the engine is running. While the engine has stopped, there is no fuel flow through the fuel rail. In this situation a change-over is not possible.

8.10.1 Automatic fuel change-over

WinGD recommends the installation and use of an automatic fuel change-over system to prevent problems during the change-over procedure.

- This system decreases the thermal load of the related fuel components (for example fuel pump plungers).
- The safety functions decrease the risk of damage because of thermal loads.
- You can do the change-over procedure at a load of up to 100% CMCR.
- The time period for automatic change-over is less than that of a manual change-over.

8.10.2 Manual fuel change-over

When you do a manual change-over of the fuel, you must make sure that the change-over is safe. Refer to the related procedures.

Make sure that during the procedures HFO never can flow into the MDO tank and pipe system.

NOTE: WinGD recommends to do a manual change-over only, if an automatic change-over system is not installed or if the automatic change-over system is unserviceable.

8.10.3 Recommended viscosity at the inlet of the fuel pumps

For the temperature necessary to make sure that the fuel upstream of the inlet to the fuel pumps is at the correct viscosity, refer to the Viscosity / Temperature Diagram in the related specification, refer to section [12.1 General for operating media](#). The viscosity for MDO must not be less than 2 cSt.

A viscosimeter measures the viscosity and thus controls the temperature of the fuel.

Make sure that you monitor the viscosity and the temperature of the fuel.

8.10.4 Cylinder oil

When you do a change-over of the fuel, you must make sure that you change to the correct cylinder oil at the same time. This prevents damage of the piston running system because of an incorrect BN. For more data refer to the related procedures.

8.10.4.1 Engine with iCAT

If the engine has an iCAT system (integrated Cylinder lubricant Auto Transfer system), WinGD recommends as follows, when you change-over the fuel:

- If the iCAT system is in auto mode, the iCAT system automatically changes-over the cylinder oil at the correct time.
- If the iCAT system is in manual control (no iCAT functionality mode), you have to manually change-over the cylinder oil at the same time as the diesel fuel change-over.

8.10.4.2 Engine without iCAT

If the engine has no iCAT system (integrated Cylinder lubricant Auto Transfer system), WinGD recommends to monitor the change-over of the cylinder oil. Do a calculation of the cylinder lubricant quantity and make sure that you know the cylinder lubricating feed rate, refer to [Figure 8-4](#).

- 1 Make sure that you know the cylinder lubricant quantity that is between the change-over valve and the lubricating quills including the measurement tube.
- 2 Calculate the related lead time that the cylinder oil has to get to the lubricating quills.
- 3 Use this lead time to have the correct timing for the change-over of the cylinder oil.

NOTE: When you change from MDO to HFO, WinGD recommends to start the change-over of the cylinder oil from low BN to high BN already inside the ECA zone. This prevents operation with high sulphur fuel and low BN cylinder oil.

Fig 8-4 Cylinder lubricant quantity**Cylinder lubricant quantity in piping and measuring tank:**

$$\text{Volume piping: } \sum V = \sum \frac{d^2 * \pi}{4} * l \quad [V] = m^3 \quad [d] = m \quad [l] = m$$

$$\text{Mass: } m = \rho * V \quad [m] = kg \quad [\rho] = \frac{kg}{m^3} \quad [V] = m^3$$

The density of the cylinder lubricant can be found in the technical data sheet. If not available, an average value of 920 $\frac{kg}{m^3}$ is suitable for this purpose.

$$\begin{aligned} \text{Total mass: } & \text{Mass of cylinder oil in measuring tank [kg]} \\ & + \\ & \text{Mass of cylinder oil in piping [kg]} \end{aligned}$$

Lead time until new lubricant is in use:

$$\text{consumption} = \frac{\text{effective feed rate} * \text{current power output}}{1000}$$

$$\text{lead time} = \frac{\text{total mass}}{\text{consumption}} \quad [\text{lead time}] = h \quad [m] = kg$$

$$[\text{consumption}] = \frac{kg}{h} \quad [\text{effective feed rate}] = \frac{g}{kWh} \quad [\text{current power output}] = kW$$

00595

Page left intentionally blank

8.11 Change-over to and from gas - general

If you change-over the fuel to and from gas operation, you have to obey the related limits.

If the engine has the optional fuel sharing mode, there are some more limits.

8.11.1 Change-over from liquid fuel to gas

If you change-over from liquid fuel to gas, the engine must operate at MDO. If you operate the engine at HFO, there is an interlock for change-over to gas. Thus you first must change-over from HFO to MDO, refer to section [8.10 Change-over the diesel fuel - general](#).

The change-over from MDO to gas has the limits that follow:

- The engine load must be in the range of 10% to 80% of CMCR.
- You only can start the procedure manually.
- Related to the conditions the procedure takes approximately one to two minutes. The ECS does some tests. If the tests are satisfactory the ECS slowly changes from diesel mode to gas mode.

NOTE: When you operate the engine continuously in gas mode for more than one week, WinGD recommends to change back to diesel mode one time each week. In diesel mode operate the engine for approximately 5 to 10 minutes at a high load of a minimum of 60%. The injection of diesel fuel makes free the holes in the nozzle tip of the injection valves ("cleaning shots") and thus decreases or prevents clogging of the holes. For more data refer to the service letter SL-0005.

NOTE: The operation in diesel mode obeys the IMO Tier II regulations. Thus do this change-over to diesel mode out of ECA zones.

8.11.2 Change-over from gas to liquid fuel

If there is a change-over from gas to liquid fuel, the ECS quickly changes to liquid fuel. First the liquid fuel is always MDO. Then you manually can change-over to HFO, if necessary.

The change-over from gas to MDO has the limits that follow:

- The engine load can be in the range of 10% to 100% of CMCR.
- If a safety limit is given, the ESS or the ECS start the procedure automatically (gas trip).
- You also can start the procedure manually.
- The procedure is done during one turn of the crankshaft.

8.11.3 Change-over related to fuel sharing mode

If the engine has the optional fuel sharing mode, the liquid fuel in use can be HFO or MDO.

NOTE: You have to set the value for the ratio of liquid fuel to gas in the RCS.

Related to fuel sharing mode the conditions that follow are possible:

- **Liquid fuel to fuel sharing**

The change-over from liquid fuel to fuel sharing has the limits that follow:

- The engine load must be in the range of 50% to 80% of CMCR.
- You only can start the procedure manually.
- Related to the conditions the procedure takes approximately one to two minutes. The ECS does some tests. If the tests are satisfactory the ECS slowly changes from diesel mode to fuel sharing mode.

- **Gas to fuel sharing**

The change-over from gas to fuel sharing has the limits that follow:

- The engine load must be in the range of 50% to 100% of CMCR.
- You only can start the procedure manually.
- The ECS slowly changes from gas mode to fuel sharing mode. First the liquid fuel is always MDO. Then you manually can change-over to HFO, if necessary.

- **Fuel sharing to liquid fuel**

The change-over from fuel sharing to liquid fuel has the limits that follow:

- The engine load is in the range of 50% to 100% of CMCR.
- If the engine load decreases to less than 50%, the ECS sends an alarm. If you do not increase the load to more than 50% in a specified period, the ECS automatically changes to diesel mode.
- You also can start the procedure manually.
- The ECS slowly changes from fuel sharing mode to liquid fuel.

- **Fuel sharing to gas**

The change-over from fuel sharing to gas has the limits that follow:

- The engine load is in the range of 50% to 100% of CMCR.
- The liquid fuel that is in operation must be MDO.
- If the engine load decreases to less than 50%, the ECS sends an alarm. If you do not increase the load to more than 50% in a specified period, the ECS automatically changes to diesel mode.
- You only can start the procedure manually.
- The ECS slowly changes from fuel sharing mode to gas.

NOTE: The period for the change-over of these procedures is related to the selected ratio of liquid fuel to gas.

8.12 Change-over the diesel fuel automatically

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	0.5 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- WinGD recommends to always do this automatic change-over procedure when possible. There is no load limit of the engine to do an automatic fuel change-over.

PROCEDURE

- 1 Start the automatic change-over procedure, refer to the instructions of the manufacturer.

CLOSE UP

- None

8.13 Change-over from HFO to MDO manually

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	2.0 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- WinGD recommends to do a manual change-over only, if an automatic change-over system is not installed or if the automatic change-over system is unserviceable.

PROCEDURE

- 1 Make a full time schedule for the change-over to obey the ECA rules.
- 2 If you operate the engine with MDO for a long period, you must change the cylinder oil to the applicable BN at the related time, refer to section [8.10 Change-over the diesel fuel - general](#).
- 3 Set to OFF the trace heating of the fuel pipes and fuel rail approximately one hour before the change-over. The correct time is related to the pipe diameter and the waste heat in the system.
- 4 Set the viscosimeter to 17 cSt to decrease the temperature of the fuel.
- 5 Set to OFF all heating sources in the system (for example fuel heaters) some minutes before the change-over.
- 6 Decrease the load of the engine to max. 50% CMCR. The decrease of the engine power is related to the total quantity of fuel that flows in the system (for example the larger the mixing tank, the less decrease in load is necessary).
- 7 Follow the instructions of the plant to slowly change-over the fuel supply from HFO to MDO. Make sure that you decrease the fuel temperature a maximum of 2°C each minute.
- 8 If the temperature changes too much, wait until the fuel temperature is stable. Then you can continue the procedure. Try to decrease the temperature as linearly as possible.
- 9 When the temperature of the fuel is near the applicable value, you can start the cooler slowly to give a linear and smooth temperature change at minimum viscosity.
NOTE: The viscosity of the fuel must not be less than 2 cSt.
- 10 Do a check of the temperature, viscosity and pressure of the supplied fuel.
- 11 If the temperature, viscosity, or pressure is not correct, find the cause and repair the fault.
- 12 If you have to collect the MDO from the leakage and return pipes, do as follows:
 - 12.1 Wait until the system is completely flushed with MDO.
NOTE: This prevents contamination of the MDO with HFO.
 - 12.2 If also a MDO leakage tank is installed, move the 3-way valve in the pipe from the outlet of the fuel leakage fuel pump and injection control to the MDO leakage tank.
 - 12.3 If the fuel return of the pressure control valve goes into the HFO service tank, set the valve positions to have the fuel return go into the MDO service tank.
- 13 If you have to stop the engine, wait until the change-over procedure is fully completed.
NOTE: This prevents problems during the subsequent engine start because of a mixture of HFO and MDO in the system.

CLOSE UP

- None

8.14 Change-over from MDO to HFO manually

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	2.0 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- WinGD recommends to do a manual change-over only, if an automatic change-over system is not installed or if the automatic change-over system is unserviceable.

PROCEDURE

- 1 Make a full time schedule for the change-over to obey the ECA rules.
- 2 Make sure that you have changed the cylinder oil to the applicable BN, refer to section [8.10 Change-over the diesel fuel - general](#).
- 3 Set to ON the trace heating of the fuel pipes and fuel rail.
- 4 If the engine room is cold, after a minimum of one hour make sure to get correct heating.
- 5 Make sure that HFO cannot flow into the MDO system.
 - 5.1 If also a MDO leakage tank is installed, move the 3-way valve in the pipe from the outlet of the fuel leakage fuel pump and injection control to the HFO leakage tank.
 - 5.2 If the fuel return of the pressure control valve goes into the MDO service tank, set the valve positions to have the fuel return go into the HFO service tank.
- 6 Close all covers on the rail unit.
- 7 Decrease the load of the engine to max. 75% CMCR. The decrease of the engine power is related to the total quantity of fuel that flows in the system (for example the larger the mixing tank, the less decrease in load is necessary).
- 8 Set the viscosimeter to 13 cSt to increase the temperature of the fuel.
NOTE: The viscosimeter controls the end-heater, which keeps the fuel temperature at the necessary viscosity.
- 9 Follow the instructions of the plant to slowly change-over the fuel supply from MDO to HFO. Make sure that you increase the fuel temperature a maximum of 2°C each minute.
NOTE: Sudden temperature changes can stop the movement of the fuel pump plungers.
- 10 If the temperature changes too much, wait until the fuel temperature is stable. Then you can continue the procedure.
- 11 Do a check of the temperature, viscosity and pressure of the supplied fuel.
- 12 If the temperature, viscosity, or pressure is not correct, find the cause and repair the fault.
- 13 If you have to stop the engine, wait until the change-over procedure is fully completed.
NOTE: This prevents problems during the subsequent engine start because of a mixture of HFO and MDO in the system.

CLOSE UP

- None

8.15 Change-over to and from gas

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
--	---------------

Duration for performing the procedure	0.1 man-hours
---------------------------------------	---------------

Duration for performing the requirements after job completion	0.0 man-hours
---	---------------

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- The engine is in usual operation.

PROCEDURE

- 1** To change-over from liquid fuel to gas, do as follows:
 - 1.1** Make sure that the engine operates with MDO.
 - 1.2** On the related control panel start the gas mode request.
NOTE: The ECS makes a test, if gas mode is available. Then the ECS sends a signal to the gas pressure control system. This system automatically starts the transfer preparation. When this transfer procedure is finished, the ECS slowly changes to gas mode.
- 2** To change-over from gas to liquid fuel, do as follows:
 - 2.1** On the related control panel start the diesel mode request.
NOTE: The ECS quickly changes from gas to MDO operation.

CLOSE UP

- None

8.16 Stop the engine - general

You can stop the engine from the locations that follow:

- At the bridge or engine control room (ECR) with remote control
- At the backup control panel in the ECR
- At the local control panel of the engine.

Related to the situation and to the planned tasks after engine shutdown, WinGD recommends to operate the engine with marine diesel oil (MDO) for some time before you stop the engine, refer to section [8.13 Change-over from HFO to MDO manually](#).

For a DF engine that operates in gas mode are the procedures related to the conditions as follows:

- **The operator pushes the STOP button**

When the operator pushes the STOP button, the ECS starts the procedures that follow:

- The ECS changes to stop mode, thus the related control system stops the gas supply and releases the pressure in the gas inlet pipes.
- The ECS de-energizes the solenoid valve on the gas admission valves (GAV), thus the gas flow to the cylinders stops.
- The ECS stops the operation of the pilot fuel valves after the crankshaft has turned 360°, thus makes sure that all gas in the combustion chambers burns.

NOTE: If the crankshaft cannot turn 360°, the ECS sends a signal for an exhaust ventilation request.

- **The ESS or ECS sends a cancelable shutdown signal**

The engine safety system (ESS) or the ECS sends a cancelable shutdown signal, when a related failure or defect occurs. The procedures are as follows:

- The ECS changes to diesel mode, thus the related control system stops the gas supply and releases the pressure in the gas inlet pipes.
- The engine continues to operate in diesel mode until the shutdown signal becomes active.
- If the operator cancels the shutdown signal within the specified period, the engine continues to operate in diesel mode.

- **The ESS or ECS sends a non-cancelable shutdown signal**

The ESS or the ECS sends a non-cancelable shutdown signal, when a related failure or defect occurs. The procedures are as follows:

- The ECS changes to diesel mode, thus the related control system stops the gas supply and releases the pressure in the gas inlet pipes.
- The ECS de-energizes the solenoid valve on the gas admission valves (GAV), thus the gas flow to the cylinders stops.
- The ECS stops the engine.
- The ECS sends a signal for an exhaust ventilation request.

Page left intentionally blank

8.17 Stop the engine

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 0.5 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- Refer to section [8.16 Stop the engine - general](#)

PROCEDURE

- 1 Select the applicable control panel.
- 2 Decrease the engine load to the minimum.
- 3 On the control panel push the STOP button.
NOTE: The ECS shuts down the engine in a controlled manner.
- 4 For a DF engine, start the exhaust ventilation sequence, if there is a ventilation request.

CLOSE UP

- None

8.18 Emergency stop the engine - general

To stop the engine in an emergency, do the procedure given in section [8.19 Emergency stop the engine](#).

Page left intentionally blank

8.19 Emergency stop the engine

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
--	---------------

Duration for performing the procedure	0.1 man-hours
---------------------------------------	---------------

Duration for performing the requirements after job completion	0.0 man-hours
---	---------------

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- In some conditions the ECS starts an automatic shutdown.

PROCEDURE

- 1 In the control room (control console), or on the local control panel, push the EMERGENCY STOP button.
NOTE: The ECS stops the engine immediately.
- 2 For a DF engine, start the exhaust ventilation sequence, if there is a ventilation request.
- 3 To make the engine ready for restart after an emergency stop, you must reset the EMERGENCY STOP button.

CAUTION

Damage Hazard. Do this step only as a last alternative selection, if the EMERGENCY STOP button is not working. Damage to the engine can occur.

- 4 In the power supply boxes E85.1 to E85.#, set to OFF the electrical power to the ECS.
- 5 Find the cause of the emergency stop and repair the fault.

CLOSE UP

- None

8.20 Prepare the engine after stop - general

After a decrease of the engine speed to less than 8% the ECS automatically starts the post-lubrication of the cylinders.

NOTE: The water and oil pumps must operate for a minimum of 20 minutes after the engine has stopped. This is to make sure that when the engine temperature has decreased, the temperature of engine parts become as stable as possible.

For a short period after an engine stop of one week or less, usually you keep the auxiliary systems in operation, refer to section [8.21 Prepare the engine for a short service break](#).

For a long period after an engine stop of more than one week or for maintenance of the engine, you do the steps in section [8.22 Prepare the engine for standstill or for maintenance](#). If you have to do maintenance, you have to make a decision about which steps of the procedure are necessary for the specified maintenance tasks.

Page left intentionally blank

8.21 Prepare the engine for a short service break

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
--	---------------

Duration for performing the procedure	0.5 man-hours
---------------------------------------	---------------

Duration for performing the requirements after job completion	0.0 man-hours
---	---------------

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- The engine must be stopped. Refer to section [8.20 Prepare the engine after stop - general](#)

PROCEDURE

- 1 Make sure that the auxiliary systems continue to operate.
- 2 If possible, keep the cooling water warm to prevent too much temperature decrease of the engine.
- 3 Open the indicator valves in the cylinder covers.
- 4 Engage the turning gear.

WARNING

Injury hazard. Before you operate the turning gear, make sure that no personnel are near the flywheel, or in the engine.

- 5 Operate the turning gear for a short period at the intervals that follow:
 - Daily in damp climate
 - Weekly in usual climate.
- 6 Stop the turning gear so, that the pistons stop in different positions each time.

CLOSE UP

- None

8.22 Prepare the engine for standstill or for maintenance

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 1.0 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- The engine must be stopped. Refer to section [8.20 Prepare the engine after stop - general](#)

PROCEDURE

- 1** Open the indicator valves in the cylinder covers.
- 2** Engage the turning gear.
- 3** Stop the fuel supply to the engine as follows:
 - 3.1** Stop the fuel supply system from the plant.
 - 3.2** Close the shut-off valve at engine connection 49 (fuel inlet).
 - 3.3** Release the pressure in the fuel system.
 - 3.4** Drain the fuel system.
 - 3.5** Close the shut-off valve at engine connection 50 (fuel return outlet).
- 4** Drain the exhaust gas manifold and the exhaust gas pipe.
- 5** Stop the air supply to the engine as follows:
 - 5.1** Stop the air supply systems from the plant.
 - 5.2** Close the shut-off valves at engine connection 40 (starting air pipe inlet).
 - 5.3** Turn the hand-wheel of the starting air shut-off valve to the position CLOSED.
 - 5.4** Drain the air systems of the engine.
 - 5.5** Release the pressure in the air pipes.
- 6** Stop the lubricating oil supply to the engine as follows:
 - 6.1** Stop the oil supply systems from the plant.
 - 6.2** Close the shut-off valves to the engine at engine connection 33 (cylinder oil inlet).
 - 6.3** Set to OFF the control box for the automatic filter.
 - 6.4** If installed, close the shut-off valves to the engine upstream of engine connection 25 (main lubricating oil inlet) and of engine connection 30 (lubricating oil crosshead inlet).
 - 6.5** Release the pressure in the oil pipes and the oil rail.
 - 6.6** Drain the oil systems of the engine.
- 7** Stop the cooling water supply to the engine as follows:
 - 7.1** Stop the cooling water supply system from the plant.
 - 7.2** If installed, close the shut-off valves upstream of engine connections 01 and/or 02 (cylinder cooling water inlet).
 - 7.3** Release the pressure in the cooling and wash-water pipes.
 - 7.4** Drain the water systems of the engine.

8 For a DF engine, stop the gas system.

8.1 If you have to do maintenance downstream of the block valve (CV7285), do as follows:

8.1.1 Make sure that the valve positions are in degassing state.

8.1.2 On the iGPR cabinet switch the button S8 to maintenance to activate the maintenance mode.

8.1.3 On the LDU-20 iGPR page, make sure that all conditions are satisfactory.

8.1.4 On the LDU-20 iGPR page, push the Engine Inerting button to start the engine inerting sequence.

8.1.5 Make sure that the indication in progress shows on the LDU-20.

NOTE: The iGPR control system does the engine inerting sequence.

8.1.6 Wait until the indication passed shows on the LDU-20.

8.1.7 On the iGPR cabinet push the button S7 to degas the system.

8.2 If you have to do maintenance on a component downstream of the master shut-off valve, do as follows:

8.2.1 Make sure that the valve positions are in degassing state.

8.2.2 On the iGPR cabinet switch the button S8 to maintenance to activate the maintenance mode.

8.2.3 On the LDU-20 iGPR page, make sure that all conditions are satisfactory.

8.2.4 On the LDU-20 iGPR page, push the Supply Line Inerting button to start the supply line inerting sequence.

8.2.5 Make sure that the indication in progress shows on the LDU-20.

NOTE: The iGPR control system does the supply line inerting sequence.

8.2.6 Wait until the indication passed shows on the LDU-20.

8.2.7 On the iGPR cabinet push the button S7 to degas the system.

9 For a DF engine, stop the pilot fuel supply to the engine as follows:

9.1 Stop the pilot fuel supply from the plant.

9.2 Close the shut-off valve at engine connection 76 (pilot fuel inlet).

9.3 Release the pressure in the pilot fuel system.

9.4 Drain the pilot fuel system.

9.5 Close the shut-off valve at engine connection 77 (pilot fuel return outlet).

- 10** Stop the control system from the engine as follows:
 - 10.1** Set to OFF all circuit breakers in the power supply box E85.
 - 10.2** Set to OFF the engine control system (ECS) and the remote control system (RCS).
- 11** Do a check of the rail unit as follows:
 - 11.1** Open the covers.
 - 11.2** Make sure that there is no condensation or corrosion.
 - 11.3** If you find condensation or corrosion, do the steps that follow:
 - 11.3.1** Clean the related part.
 - 11.3.2** Find the cause and repair the fault.
 - 11.4** If necessary, apply anti-corrosion oil to give protection.
 - 11.5** Close the covers.
- 12** Do a check of the supply unit as follows:
 - 12.1** Make sure that there is no condensation or corrosion.
 - 12.2** If you find condensation or corrosion, do the steps that follow:
 - 12.2.1** Clean the related part.
 - 12.2.2** Find the cause and repair the fault.
 - 12.3** If necessary, apply anti-corrosion oil to give protection.
- 13** If the engine must have preservation for a long period, speak to or send a message to WinGD for the applicable preservation procedures.

CLOSE UP

- None

8.23 LP-SCR system: Change Tier mode

The low pressure selective catalytic reduction system (LP-SCR) has 3 different operation modes.

- Tier II mode
- Prepare Tier III mode
- Tier III mode

Before changing modes, make sure these preconditions are fulfilled:

- The engine is running
- All limits are deactivated (for example CA limit, Torque limit)
- The engine is running with all cylinders (no cylinder cut-off)
- The “No Limit” cancel button is on
- There is no engine slowdown
- The engine is not operating in rough sea
- The engine is without any other major flaws
- The exhaust valve system is in the ready condition
- The regeneration procedure is inactivate
- The emergency bypass is deactivated unless the emergency bypass switch is operated
- The CAN communicates properly with the engine control system

If all the preconditions are met, the LP-SCR can change modes in the following 3 ways:

- Change from Tier II mode to Prepare to Tier III mode

NOTE: It is possible to change directly from Tier II mode to Tier III mode without changing to Prepare to Tier III mode. However, this direct change can fail. It is recommended to change from Tier II to Prepare to Tier III mode first.

- 1 Press the button: Select Prepare Tier III mode

NOTE: The LED next to Select: Prepare Tier III will be flashing during the change to the Prepare to Tier III mode.

- 2 Check, if the LEDs on your LDU corresponds to the LEDs on the illustration, see:

- Change from Prepare to Tier III mode to Tier III mode

- 1 Press the button: Select Tier III mode

NOTE: The LED next to Select: Tier II will be flashing during the change to the Tier III mode.

- 2 Check, if the LEDs on your LDU corresponds to the LEDs on the illustration, see:

- Change from Tier III mode to Tier II mode

- 1 Press the button: Select Prepare Tier II mode

NOTE: The LED next to Select: Tier II will be blinking during the change to the Tier II mode.

- 2 Check, if the LEDs on your LDU corresponds to the LEDs on the illustration, see:

Fig 8-5 Select: Prepare Tier III

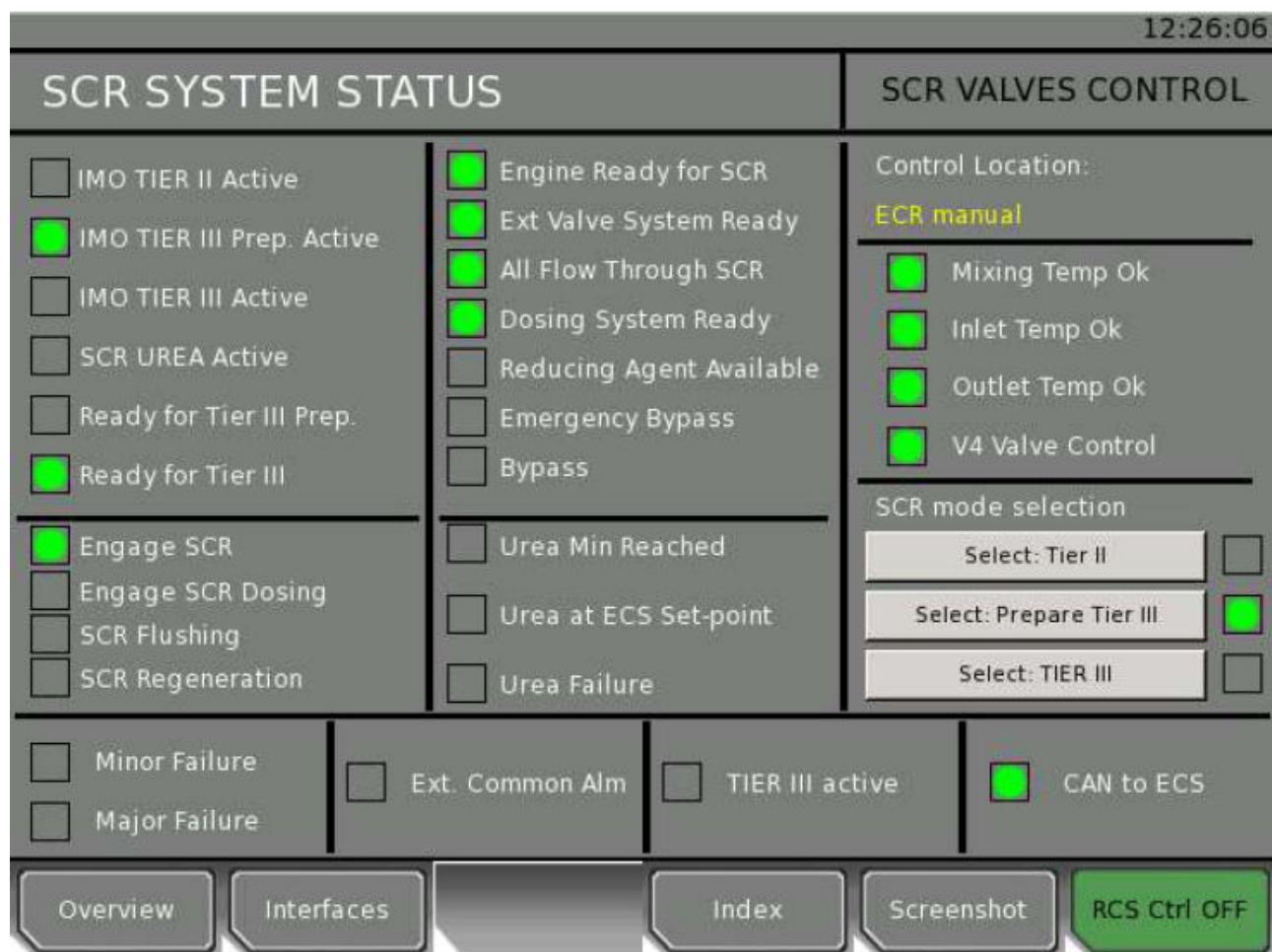


Fig 8-6 Select: Tier III

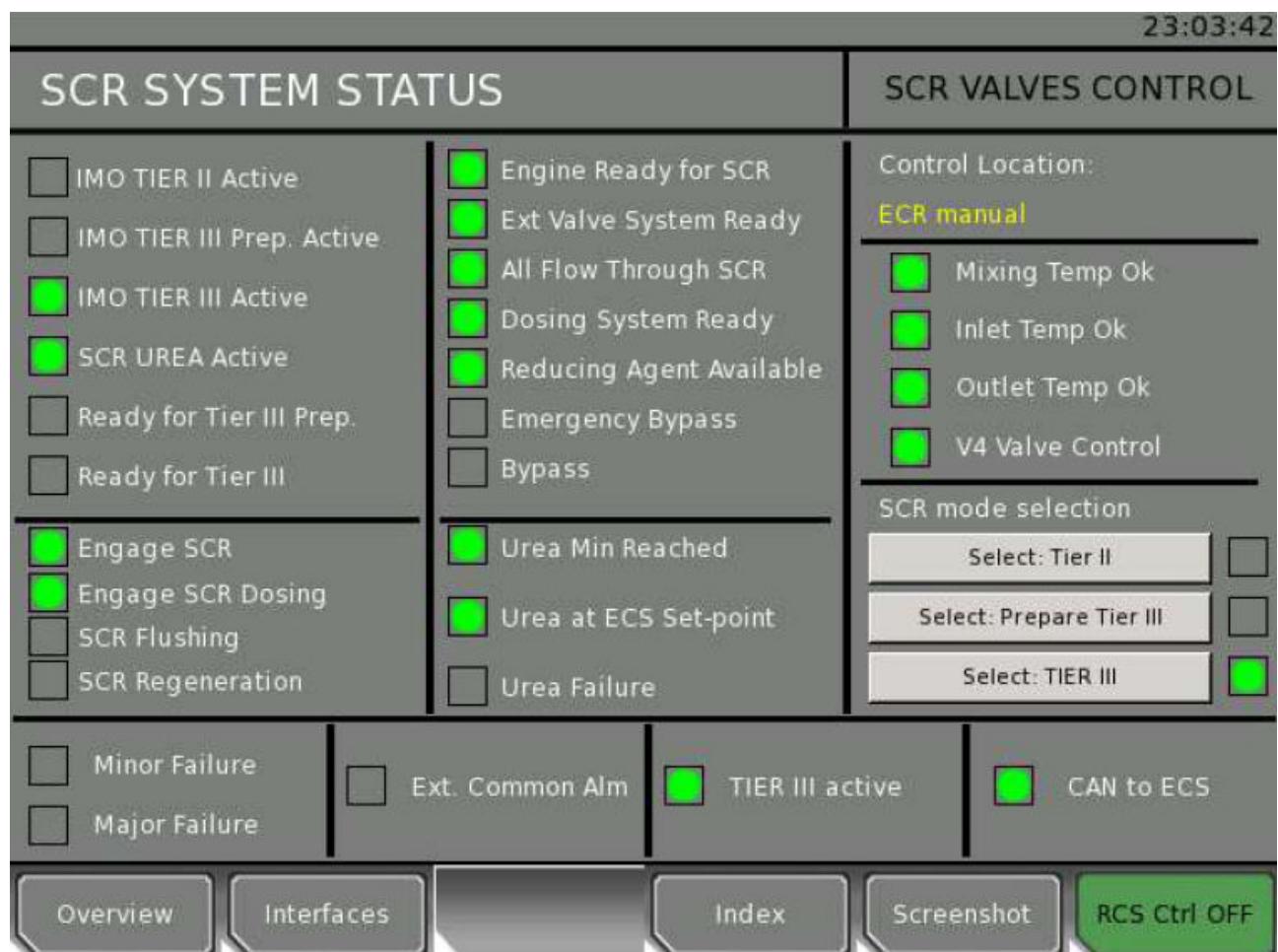
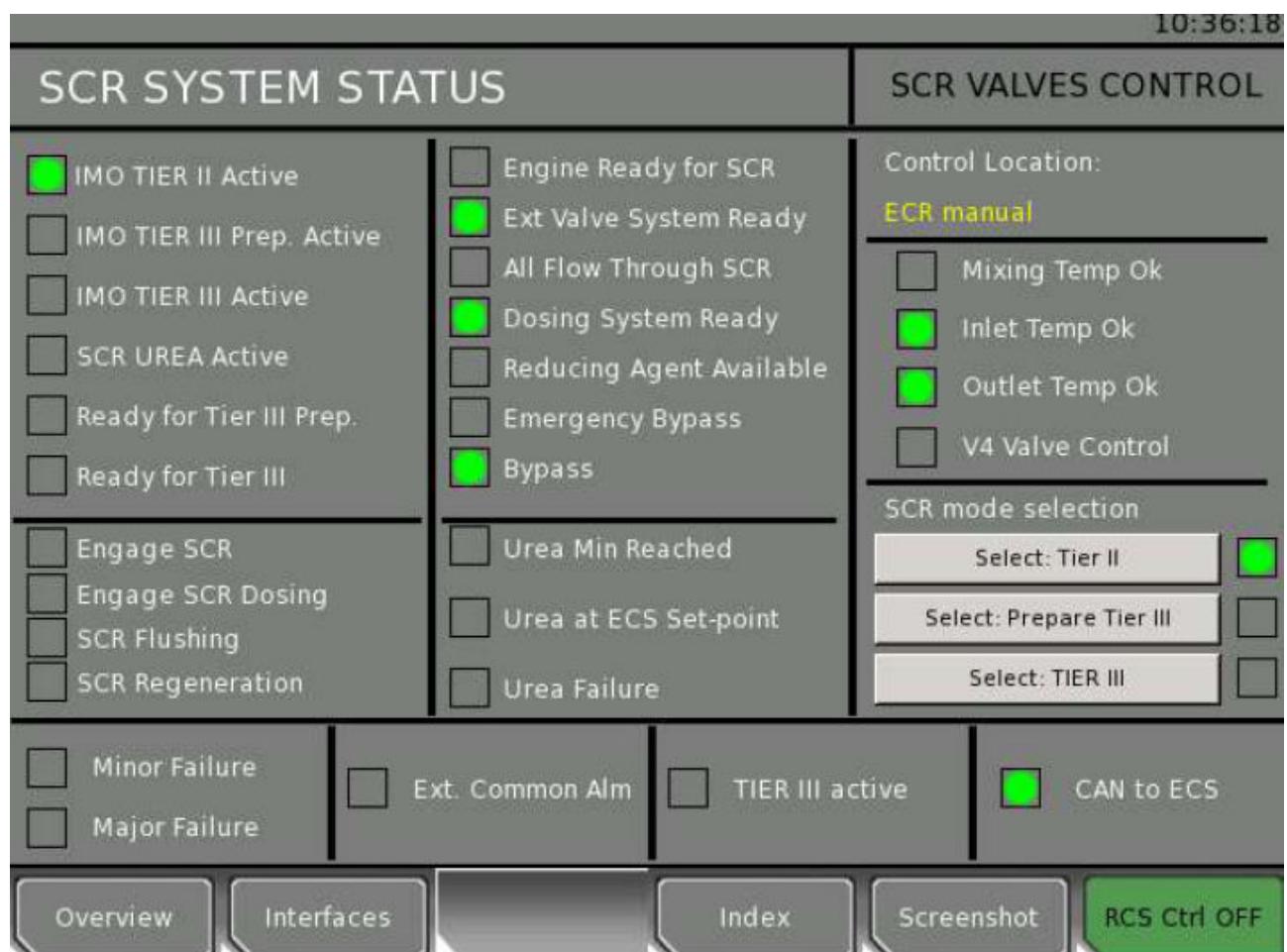



Fig 8-7 Select: Tier II

NOTE: If any major failure occurs or if the emergency bypass switch is operated, the LP-SCR will change back to Tier II mode.

8.24 Special running condition: Cylinder cut out

The engine is designed to run with all its cylinders working. If a cylinder stops working, it must be repaired as soon as possible. However, if it is impossible to repair the not working cylinder, then the engine can still be run as long as only 1 or 2 cylinders are not working. This is called cylinder cut out operation and it is considered a special running condition.

WARNING

The special running condition of the cylinder cut out is only available in diesel mode.

WARNING

Running the engine under a special running condition will impact the following parameters negatively:

- Increase of Thermal load
- Increase of exhaust temperature
- Increase of torsional vibrations
- Increase of stress on the Crankshaft
- Reduction of engine revolutions
- Reduction of load limit
- Occurance of Surging

WARNING

If 2 or more cylinders are misfiring, Contact WinGD immediately.

WARNING

Running the engine under special running conditions for more than 2-5 days can damage the engine. If the engine is run under special running conditions for more than that, contact the engine builder to obtain advice.

NOTE: If only the fuel for the respective cylinders is cut off, while the same time, the starting air connections remain intact, then the engine remains fully maneuverable.

NOTE: If the starting air supply is cut off to some cylinders, the engine might not start from all crankshaft positions. This can be resolved by starting the engine in reverse it or by using the turning gear to change the starting position.

There are 5 different procedures of cutting a single cylinder out of operation. If it is needed, each procedure can be repeated to cut off a second cylinder. The correct procedure depends on the circumstances of under which the cylinder is underperforming, so chose the procedure best fitting for the circumstances. The 5 procedures are:

- A.) Cylinder cut out while the piston and exhaust valve are still working and the compression is still on
- B.) Cylinder cut out while the piston and exhaust valve are still working and the compression is off
- C.) Cylinder cut out while the piston is still moving but the exhaust valve is closed and the compression is on

- D.) Cylinder cut out while the piston and crosshead are suspended and the connecting rod is out
- E.) Cylinder cut out while the piston, piston rod, crosshead and connecting rod are all totally out

NOTE: If the crosshead and crankpin bearings are operative, the oil inlet to the crosshead must remain free.

NOTE: For procedures B, D and E, always contact WinGD for a case specific calculation of allowable output and possible barred speed range.

A.) Cylinder cut out while the piston and exhaust valve are still working and the compression is still on:

- 1 On the LDU, access the “Fuel Injection Adjust Page”.
- 2 On the page, turn off the fuel injection for the corresponding cylinder
- 3 Disconnect the electrical plugs for the fuel injectors of the corresponding cylinder
- 4 Check if the exhaust valve remains in operation

The cylinder is now cut out and the engine performs under special running conditions.

NOTE: A malfunctioning or out of operation exhaust valve may cause the turbochargers to surge.

B.) Cylinder cut out while the piston and exhaust valve are still working and the compression is off

- 1 On the LDU, access the “Fuel Injection Adjust Page”.
- 2 On the page, turn off the fuel injection for the corresponding cylinder
- 3 Disconnect the electrical plugs for the fuel injectors of the corresponding cylinder
- 4 Shut off the air supply to the exhaust valve and stop the lube oil pumps
- 5 Put the exhaust valve out of operation and lock it in open position.
- 6 Dismantle the block and the actuator oil pipe
- 7 Restart the lube oil pumps
- 8 Close the cooling water inlet and outlet valves for the cylinder. If necessary, drain the cooling water spaces completely
- 9 Dismantle the starting air pipe and blank off the main pipe and the control air pipe for the corresponding cylinder
- 10 After 15 minutes of running, open the crankcase and check:
 - The bearings
 - The temporarily secured parts
 - The oil flow through bearings
 - The tightness of blanked-off openings
- 11 After 60 minutes of running, open the crankcase and check:
 - The bearings
 - The temporarily secured parts
 - The oil flow through bearings
 - The tightness of blanked-off openings

WARNING

When operating in this manner, the engine speed must stay 55% of the maximum continuous rating speed. Additionally, the over-speed level of the engine must be lowered to 80% of the continuous rating speed.

NOTE: During maneuvers, the engine speed can be raised for 10 minutes to 80% of the continuous rating speed.

The cylinder is now cut out and the engine performs under special running conditions.

C.) Cylinder cut out while the piston is still moving but the exhaust valve is closed and the compression is on

- 1 Stop the engine
- 2 On the LDU, access the “Fuel Injection Adjust Page”.
- 3 On the page, turn off the fuel injection for the corresponding cylinder
- 4 Disconnect the electrical plugs for the fuel injectors of the corresponding cylinder
- 5 On the LDU, on the exhaust valve control page, make sure there are no error indications shown
- 6 Make sure that the exhaust valve is completely closed
- 7 If the exhaust valve isn't completely closed, disconnect the plug for the cylinder starting valve
- 8 After 15 minutes of running, open the crankcase and check:
 - The bearings
 - The temporarily secured parts
 - The oil flow through bearings
 - The tightness of blanked-off openings
- 9 After 60 minutes of running, open the crankcase and check:
 - The bearings
 - The temporarily secured parts
 - The oil flow through bearings
 - The tightness of blanked-off openings

WARNING

The cylinder cooling water and piston cooling oil must not be cut off.

NOTE: A malfunctioning or out of operation exhaust valve may cause the turbochargers to surge.

The cylinder is now cut out and the engine performs under special running conditions.

D.) Cylinder cut out while the piston, piston rod and crosshead are suspended in the engine and the connecting rod is out

- 1 Stop the engine
- 2 On the LDU, access the “Fuel Injection Adjust Page”.

- 3 On the page, turn off the fuel injection for the corresponding cylinder
- 4 Disconnect the electrical plugs for the fuel injectors of the corresponding cylinder
- 5 On the LDU, on the exhaust valve control page, make sure there are no error indications shown
- 6 Make sure that the exhaust valve is completely closed
- 7 If the exhaust valve isn't completely closed, disconnect the plug for the cylinder starting air valve
- 8 Dismantle the starting air pipe
- 9 Blank off the main pipe and the control air pipe for the relating cylinder
- 10 Remove the oil supply lever.
- 11 Blank off the oil supply with the blind flange.
- 12 Set the cylinder lubricator for the corresponding cylinder to zero delivery.
- 13 After 15 minutes of running, open the crankcase and check:
 - The bearings
 - The temporarily secured parts
 - The oil flow through bearings
 - The tightness of blanked-off openings
- 14 After 60 minutes of running, open the crankcase and check:
 - The bearings
 - The temporarily secured parts
 - The oil flow through bearings
 - The tightness of blanked-off openings

The cylinder is now cut out and the engine performs under special running conditions.

E.) Cylinder cut out while the piston, piston rod, crosshead and connecting rod are all totally out

- 1 Stop the engine
- 2 On the LDU, access the "Fuel Injection Adjust Page".
- 3 On the page, turn off the fuel injection for the corresponding cylinder
- 4 Disconnect the electrical plugs for the fuel injectors of the corresponding cylinder
- 5 On the LDU, on the exhaust valve control page, make sure there are no error indications shown
- 6 Make sure that the exhaust valve is completely closed
- 7 If the exhaust valve isn't completely closed, disconnect the plug for the cylinder starting air valve
- 8 Dismantle the starting air pipe
- 9 Blank off the main pipe and the control air pipe for the relating cylinder
- 10 Remove the oil supply lever.
- 11 Blank off the oil supply with the blind flange
- 12 Blank off the stuffing box opening with two plates
- 13 Set the cylinder lubricator for the corresponding cylinder to zero delivery.

14 After 15 minutes of running, open the crankcase and check:

- The bearings
- The temporarily secured parts
- The oil flow through bearings
- The tightness of blanked-off openings

15 After 60 minutes of running, open the crankcase and check:

- The bearings
- The temporarily secured parts
- The oil flow through bearings
- The tightness of blanked-off openings

The cylinder is now cut out and the engine performs under special running conditions.

Fig 8-8 Allowed load during cylinder cut out

no cyl.	1 cyl. out		2 cyl. out	
	max. rpm [% of n_{cmcr}]	max. power [% of P_{cmcr}]	max. rpm [% of n_{cmcr}]	max. power [% of P_{cmcr}]
4	67%	30%	55%	16%
5	77%	46%	60%	21%
6	83%	57%	63%	25%
7	87%	67%	65%	28%
8	90%	74%	67%	30%
9	93%	80%	73%	38%
10	95%	85%	77%	46%
11	95%	87%	80%	52%
12	96%	88%	83%	57%
14	96%	90%	87%	67%

no cyl.	1 cyl. out		2 cyl. out	
	max. rpm [% of n_{cmcr}]	max. power [% of P_{cmcr}]	max. rpm [% of n_{cmcr}]	max. power [% of P_{cmcr}]
4	77%	45%	53%	15%
5	82%	56%	60%	22%
6	86%	64%	67%	31%
7	89%	70%	73%	39%
8	91%	75%	77%	45%
9	92%	79%	80%	51%
10	94%	82%	82%	56%
11	95%	85%	84%	60%
12	95%	87%	86%	64%
14	96%	90%	89%	70%

Page left intentionally blank

8.25 Special running condition: Turbocharger cut out

The engine is designed to run with all its turbochargers working. If a turbocharger stops working, it must be repaired as soon as possible. However, if it is impossible to repair the not working turbocharger, then the engine can still be run, even with 2 turbochargers not working. This is called turbocharger cut out operation and it is considered a special running condition.

NOTE: If during one of the procedures mentioned in this chapter, an auxiliary blower becomes inoperative, it will automatically be cut out thanks to the built in non-return valve.

WARNING

Running the engine under a special running condition will impact the following parameters negatively:

- Increase of Thermal load
- Increase of exhaust temperature
- Increase of torsional vibrations
- Increase of stress on the Crankshaft
- Reduction of engine revolutions
- Reduction of load limit
- occurrence of surging

WARNING

Running the engine under special running conditions for more than 2-5 days can damage the engine. If the engine is run under special running conditions for more than that, contact the engine builder to obtain advice.

A turbocharger can be manually taken out of operation. The main reasons to do so are:

- Heavy turbocharger vibrations
- Bearing failure
- Malfunction of the turbocharger

The turbocharger can be taken out of operation while keeping the vessel maneuverable. For this, reduce the load until the turbocharger vibrations are gone.

If reducing the load doesn't help and the turbocharger has problems running even at reduced load, then proceed like this:

WARNING

Taking the turbocharger out of operation while keeping the vessel maneuverable should only be done if it isn't possible to run for an extended period with a turbocharger out of operation.

A.) For engines with one turbocharger:

- 1 Stop the engine
- 2 Open the cover (E)
- 3 Lock the rotor of the faulty turbocharger (check your turbocharger manual for details)

- 4 Remove the compensator (1) between the compressor outlet and the scavenge air duct.
- 5 Remove the expansion piece (2) for the air outlet of the turbocharger (F)
- 6 If there is oil loss, plug the turbocharger
- 7 Switch on the manual mode of the auxiliary blower
- 8 Make sure you are within the load restriction
- 9 Verify the maximum firing pressure

The turbocharger has been cut out successfully. The engine is now running under a special running condition.

B.) For engines with two or more turbochargers:

- 1 Stop the engine
- 2 Open the cover (E)
- 3 Lock the rotor of the faulty turbocharger (check your turbocharger manual for details)
- 4 Remove the compensator (1) between the compressor outlet and the scavenge air duct.
- 5 Remove the expansion piece (2) for the air outlet of the turbocharger (F)
- 6 Insert an orifice plate (3, 4) in the compressor outlet
- 7 If there is oil loss, plug the turbochargers
- 8 Switch on the manual mode of the auxiliary blower
- 9 Make sure you are within the load restriction
- 10 Verify the maximum firing pressure

NOTE: The load restriction for 1 out of 2 turbochargers is 40%. The load restriction for 1 out of 3 turbochargers is 55%. The load restriction can be increased considerably, if an orifice plate is also inserted in the turbine inlet.

NOTE: If reducing the load doesn't help and the turbocharger has problems running even at reduced load, then consult the turbocharger manual for further advice.

The turbocharger has been cut out successfully. The engine is now running under a special running condition.

If it is possible to run for an extended period of time with a turbocharger out of operation, then proceed like this:

C.) For engines with one turbocharger and the exhaust bypass option:

- 1 Stop the engine
- 2 Open the cover (E)
- 3 Lock the rotor of the faulty turbocharger (check your turbocharger manual for details)
- 4 Remove the blanking plate (T1, T2, T3, T4) from the exhaust bypass pipe
- 5 Remove the compensator (1) between the compressor outlet and the scavenge air duct.
- 6 Remove the expansion piece (2) for the air outlet of the turbocharger (F)
- 7 Insert an orifice plate (3, 4) in the compressor outlet
- 8 If there is oil loss, plug the turbocharger
- 9 Switch on the manual mode of the auxiliary blower

- 10 Make sure you are within the load restriction
- 11 Verify the maximum firing pressure

The turbocharger has been cut out successfully. The engine is now running under a special running condition.

D.) For engines with one turbocharger but without the exhaust bypass option:

- 1 Stop the engine
- 2 Open the cover (E)
- 3 Lock the rotor of the faulty turbocharger (check your turbocharger manual for details)
- 4 Insert the blanking plate (T1, T2, T3, T4) according to your turbocharger manual
- 5 Remove the compensator (1) between the compressor outlet and the scavenge air duct.
- 6 Remove the expansion piece (2) for the air outlet of the turbocharger (F)
- 7 Insert an orifice plate (3, 4) in the compressor outlet
- 8 If there is oil loss, plug the turbocharger
- 9 Switch on the manual mode of the auxiliary blower
- 10 Make sure you are within the load restriction
- 11 Verify the maximum firing pressure

The turbocharger has been cut out successfully. The engine is now running under a special running condition.

E.) For engines with two or more turbochargers:

- 1 Stop the engine
- 2 Open the cover (E)
- 3 Lock the rotor of the faulty turbocharger (check your turbocharger manual for details)
- 4 Remove the blanking plate (T1, T2, T3, T4) from the exhaust bypass pipe
- 5 Remove the compensator (1) between the compressor outlet and the scavenge air duct.
- 6 Remove the expansion piece (2) for the air outlet of the turbocharger (F)
- 7 Insert an orifice plate (3, 4) in the compressor outlet
- 8 If there is oil loss, plug the turbochargers
- 9 Switch on the manual mode of the auxiliary blower
- 10 Make sure you are within the load restriction
- 11 Verify the maximum firing pressure

The turbocharger has been cut out successfully. The engine is now running under a special running condition.

Turbochargers can be repaired during the voyage. If this is necessary, proceed like this:

E.) For engines with one turbocharger:

- 1 Stop the engine
- 2 Open the cover (E)
- 3 Lock the rotor of the faulty turbocharger (check your turbocharger manual for details)

- 4 Insert the blanking plate (T1, T2, T3, T4) according to your turbocharger manual
- 5 Remove the compensator (1) between the compressor outlet and the scavenge air duct.
- 6 Remove the expansion piece (2) for the air outlet of the turbocharger (F)
- 7 Insert an orifice plate (3, 4) in the compressor outlet
- 8 If there is oil loss, plug the turbocharger
- 9 Switch on the manual mode of the auxiliary blower
- 10 Make sure you are within the load restriction
- 11 Verify the maximum firing pressure

F.) For engines with two or more turbochargers:

- 1 Stop the engine
- 2 Open the cover (E)
- 3 Lock the rotor of the faulty turbocharger (check your turbocharger manual for details)
- 4 Insert the blanking plate (T1, T2, T3, T4) according to your turbocharger manual
- 5 Remove the compensator (1) between the compressor outlet and the scavenge air duct.
- 6 Remove the expansion piece (2) for the air outlet of the turbocharger (F)
- 7 Insert an orifice plate (3, 4) in the compressor outlet
- 8 If there is oil loss, plug the turbochargers
- 9 Switch on the manual mode of the auxiliary blower
- 10 Make sure you are within the load restriction
- 11 Verify the maximum firing pressure

Fig 8-9 Turbocharger cut out procedure: Illustration 1

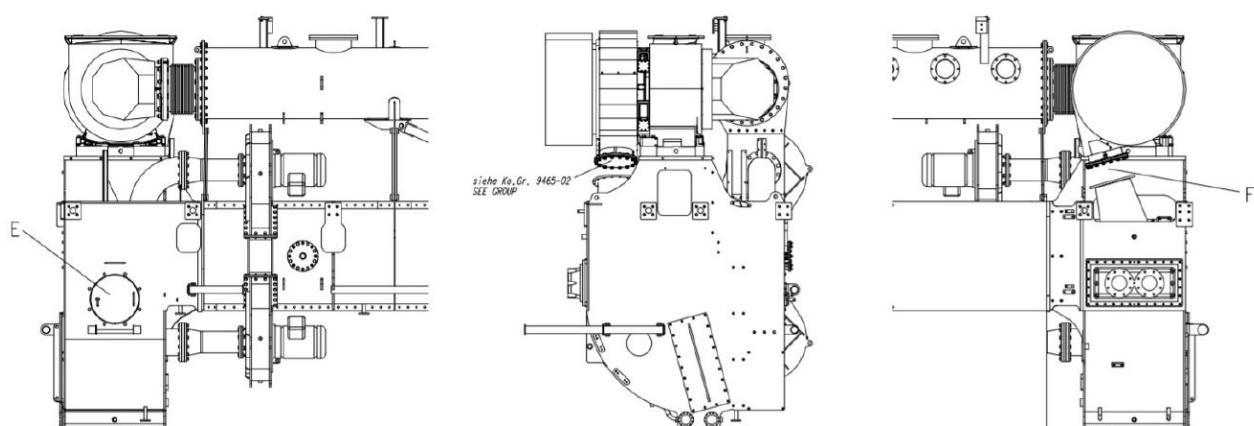
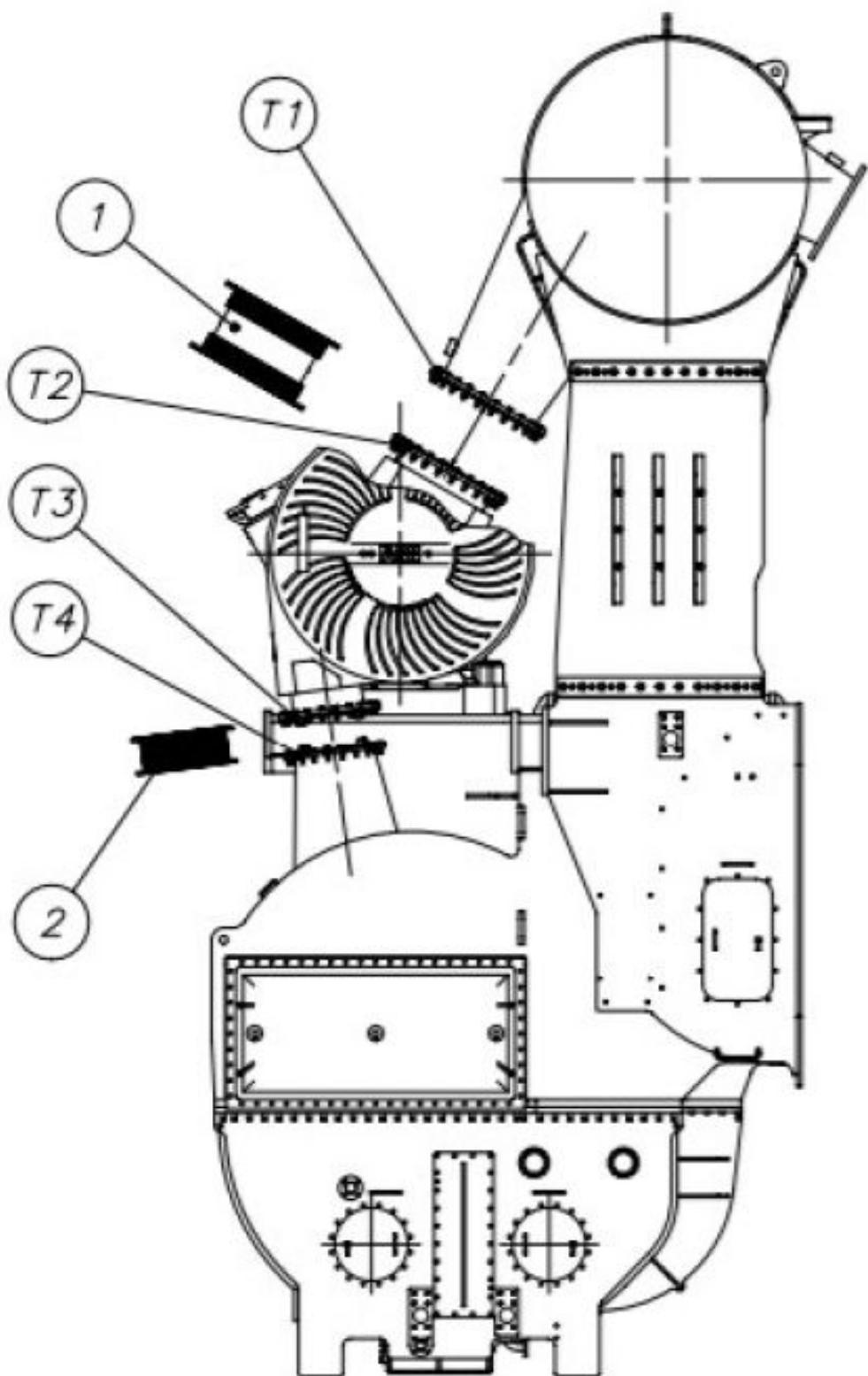



Fig 8-10 Turbocharger cut out procedure: Illustration 2

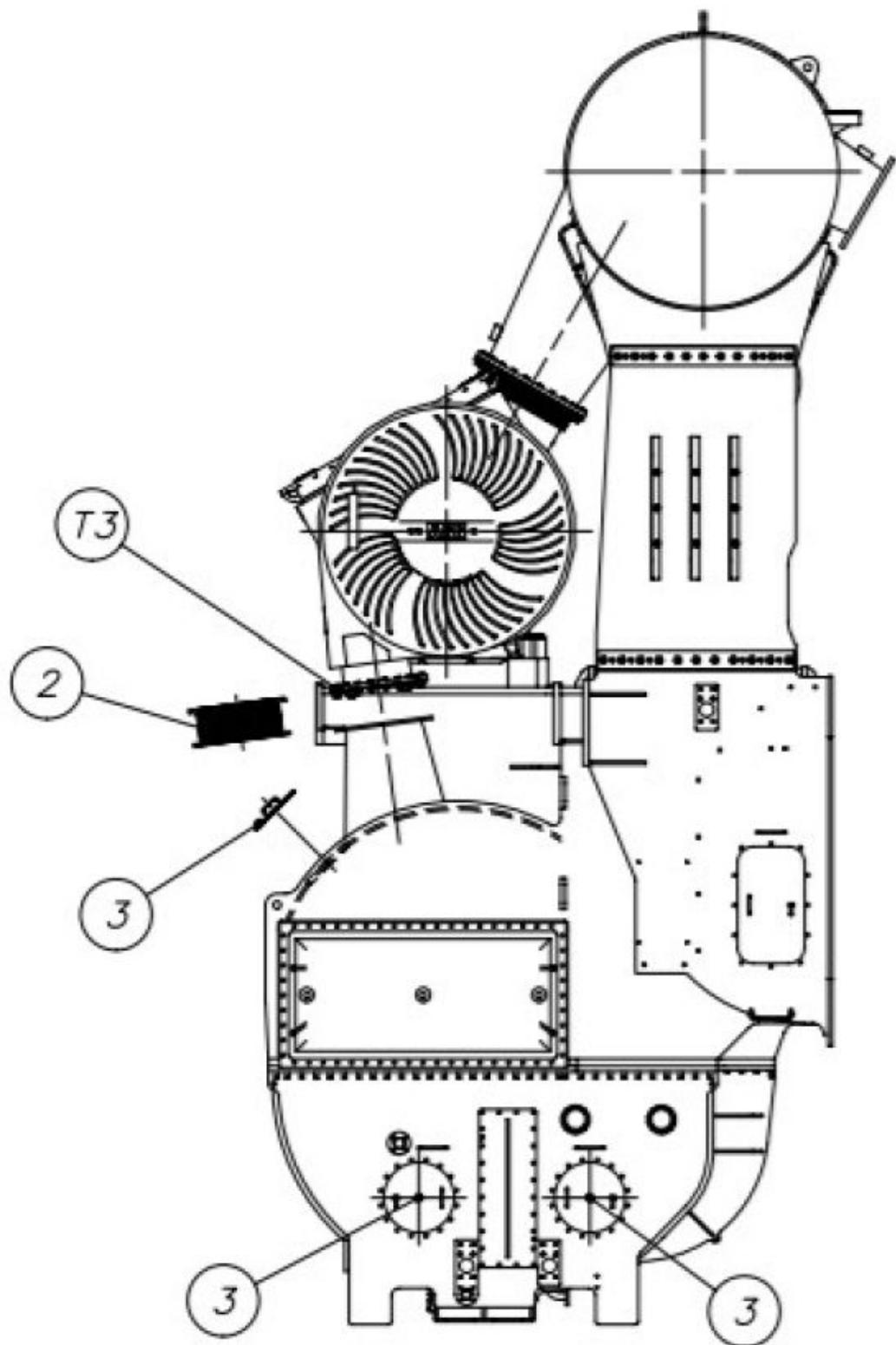
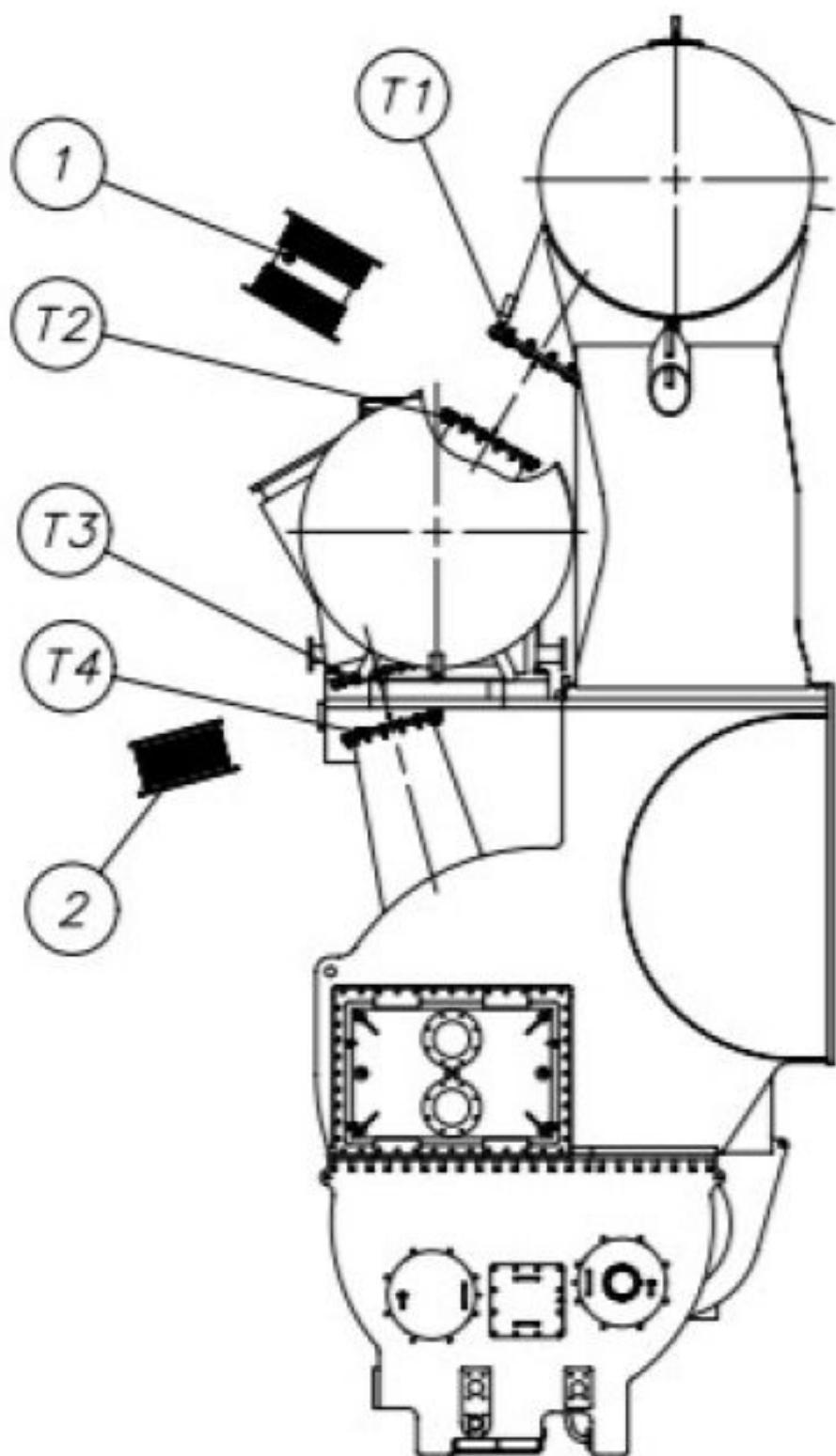
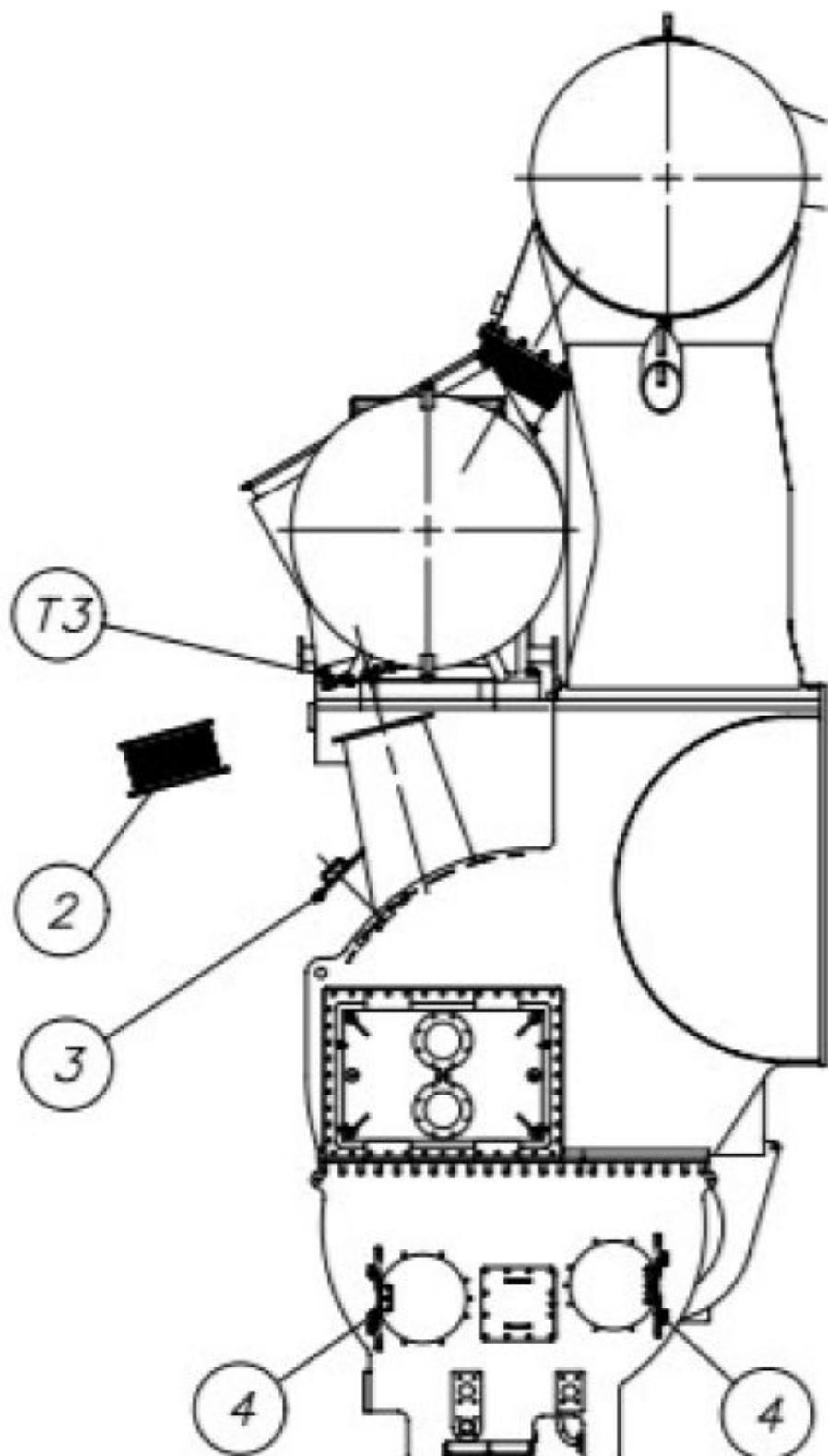



Fig 8-11 Turbocharger cut out procedure: Illustration 3

Fig 8-12 Turbocharger cut out procedure: Illustration 4

Fig 8-13 Turbocharger cut out procedure: Illustration 5

NOTE: If during the one of the procedures mentioned in this chapter, an auxiliary blower becomes inoperative, it will automatically be cut out thanks to the built in non-return valve. This will restrict the operation of the engine.

Page left intentionally blank

9 Service during operation

9.1	Do an analysis of the system oil.	440
9.2	Do an analysis of the cylinder oil.	442
9.3	Replace the filter element of the duplex filter.	446
9.4	Clean the scavenge air cooler during operation.	448
9.5	Do a test of the exhaust waste valve.	452
9.6	Running-in of new components - general.	454
9.7	Running-in of new components.	456

Operation Manual

Do an analysis of the system oil

9.1 Do an analysis of the system oil

Periodicity

Description

Working hours	3000
Working hours	6000
Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	0.5 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
Sample bottles	A/R

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

CAUTION

Injury Hazard: The system oil is hot. Put on gloves and safety goggles to prevent injuries. Do the work carefully.

PRELIMINARY OPERATIONS

- The oil pump is running.
- The system oil has operating temperature.
- The periodicity of 3000 working hours applies for regular oil analysis.
- The periodicity of 6000 working hours applies for FZG and particle count analysis.

PROCEDURE

1 Flush the sample pipe.

NOTE: Use the sample point related to the engine as follows:

- For an engine with servo oil filter, do as follows:
 - Get a sample from the sample point at the engine inlet.
 - If the analysis shows unusual values, get a sample from the sample point after the servo oil filter.
- For an engine without servo oil filter, get the sample from the sample point at the engine inlet.

1.1 Put an applicable container under the sample valve.

1.2 Slowly open the sample valve to flush out oil and possible dirt.

1.3 Close the sample valve.

1.4 Discard the oil correctly.

2 Get an oil sample.

2.1 Put the sample bottle under the sample valve.

2.2 Slowly open the sample valve to fully fill the sample bottle.

NOTE: The necessary quantity of oil is as follows:

- 100 ml for regular oil analysis
- 5 l for FZG and particle count analysis.

2.3 Close the sample valve.

2.4 Close the sample bottle tight.

3 Write the data that follows on the sample bottle:

- Name of the ship
- Type and serial number of the engine
- Date of the sampling
- Location of the sample point
- Operating hours of the oil and of the engine
- Brand and type of the oil.

4 If applicable, do [Step 1](#) to [Step 3](#) again for the other sample point.

5 Send the sample bottles in an applicable package to a laboratory for analysis.

6 Do the procedures related to the results, refer to section [\[section not applicable for this engine\]](#) or to the document "Lubricants" on the WinGD website (<https://www.wingd.com/>).

CLOSE UP

- None

Operation Manual

Do an analysis of the cylinder oil

9.2 Do an analysis of the cylinder oil

Periodicity

Description

Weeks	1
Unscheduled	After a fuel change
Unscheduled	After a cylinder oil change
Unscheduled	After a feed rate change
Duration for performing preliminary requirements	2.0 man-hours
Duration for performing the procedure	6.0 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

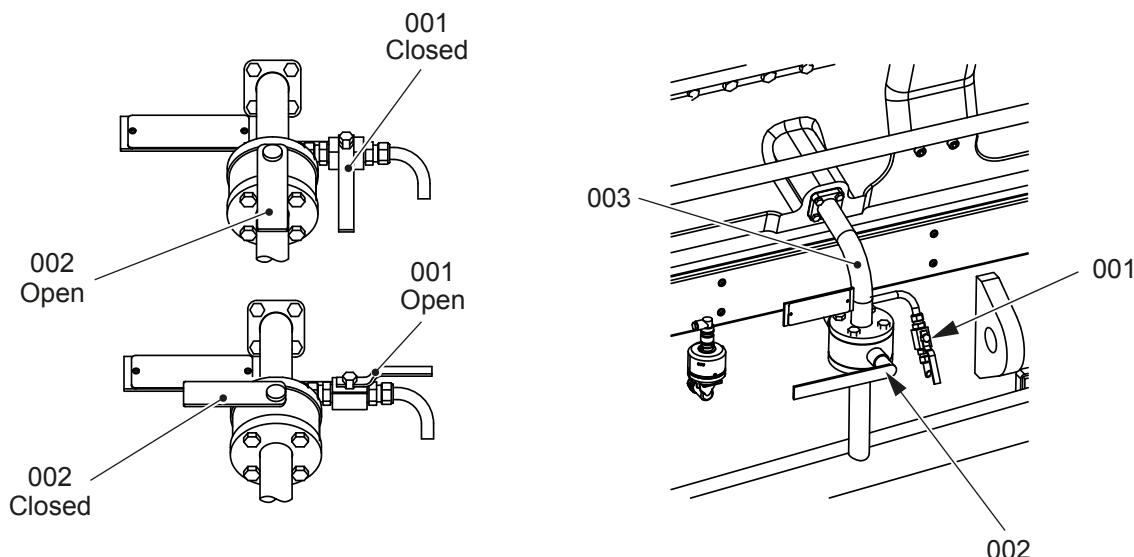
Description	QTY
Sample bottles	A/R

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

CAUTION


Injury Hazard: The cylinder oil is hot. Put on gloves and safety goggles to prevent injury. Do the work carefully.

PRELIMINARY OPERATIONS

- The engine must be in stable operation for a minimum of 12 hours.
- The duration of the procedure is related to the number of cylinders.

PROCEDURE

Fig 9-1 Location of ball valves - dirty oil samples

00010

- 1 Do this procedure at a minimum of one time each week, and do it also in the conditions that follow:
 - After a fuel change
 - After a cylinder oil change
 - After a feed rate change.
- 2 Flush the sample pipe of the related cylinder.
 - 2.1 Close the ball valve (002, [Figure 9-1](#)) for approximately 30 minutes to 60 minutes.

NOTE: Some parts can look different.
 - 2.2 Put an applicable container under the oil sample valve (001).
 - 2.3 Slowly open the oil sample valve (001) to flush out oil and possible dirt.
 - 2.4 Close the oil sample valve (001).
 - 2.5 Open the ball valve (002) to drain the remaining oil from the dirty oil pipe (003).
 - 2.6 Close the ball valve (002).
- 3 Get a sample of the drain oil.
 - 3.1 Make sure that the label on the sample bottle refers to the related cylinder.
 - 3.2 Wait approximately 10 to 60 minutes.
 - 3.3 Put the sample bottle under the oil sample valve (001).
 - 3.4 Slowly open the oil sample valve (001) to fill the sample bottle.
 - 3.5 Close the oil sample valve (001).
 - 3.6 Open the ball valve (002) to drain the oil in the dirty oil pipe (003).

- 4 Do [Step 2](#) and [Step 3](#) again for each cylinder.
- 5 Write the applicable data on the oil analysis form (for example operation conditions, fuel parameters, cylinder lubricating feed rate).
- 6 Do an oil analysis of the samples on-board. The oil analysis must include the data that follows:
 - Residual BN
 - Iron (Fe) content (if possible).
- 7 If necessary, do the applicable recommended procedures, refer to section [\[section not applicable for this engine\]](#) or to the document “Lubricants” on the WinGD website (<https://www.wingd.com/>).
- 8 Send the oil samples to a laboratory for an oil analysis.
 - 8.1 Make sure that the sample bottles are tightly closed.
 - 8.2 Put the sample bottles in an applicable package.
- 9 Compare the oil analysis from the laboratory with the oil analysis from on-board.
- 10 If the oil analyses are different, do the applicable recommended procedures related to the oil analysis from the laboratory, refer to section [\[section not applicable for this engine\]](#) or to the document “Lubricants” on the WinGD website (<https://www.wingd.com/>).

CLOSE UP

- None

Page left intentionally blank

9.3 Replace the filter element of the duplex filter

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
--	---------------

Duration for performing the procedure	1.0 man-hours
---------------------------------------	---------------

Duration for performing the requirements after job completion	0.0 man-hours
---	---------------

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
Filter element		HA1-59-9613-01 -002	pc 1

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- None

PROCEDURE

- 1 Change over to the clean filter chamber.
- 2 Drain the clogged filter chamber.
- 3 Remove the cover of the clogged filter chamber.
- 4 Remove the filter element from the filter chamber.
- 5 Clean the filter chamber.
- 6 Clean the filter element or take a new filter element.
- 7 Install the new filter element into the filter chamber.
- 8 Install the cover on the filter chamber.
- 9 Make sure that the cleaned filter chamber has no leaks.

CLOSE UP

- None

9.4 Clean the scavenge air cooler during operation

Periodicity

Description

Weeks	1
Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	1.0 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

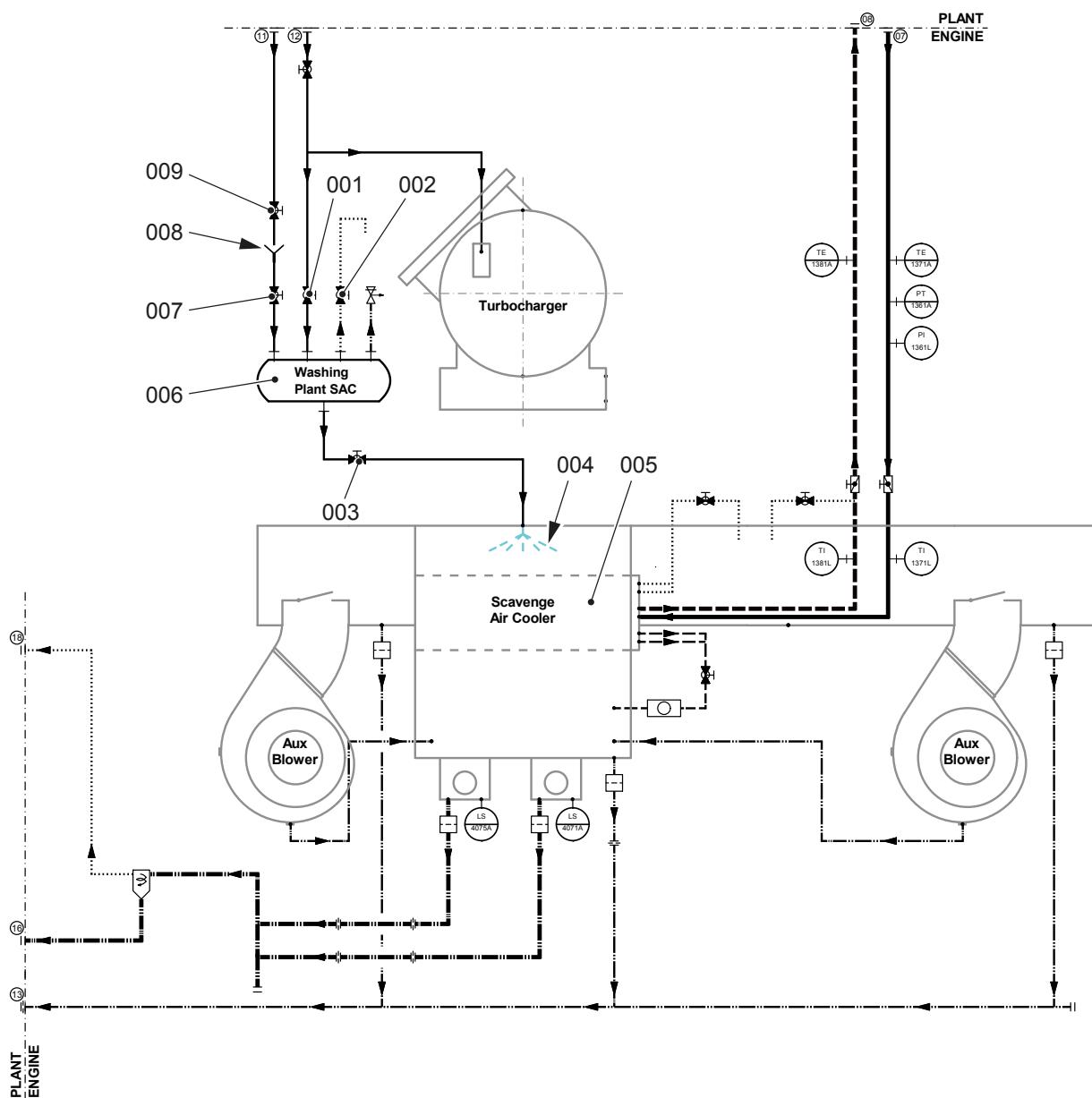
Supplies

Description	QTY
Cleaning fluid	A/R

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS


- None

PRELIMINARY OPERATIONS

- None

PROCEDURE

Fig 9-2 SAC - clean during operation (example)

00520

- 1 Decrease the engine power to approximately 45%.
- 2 Make sure that compressed air is available at the shut-off valve (001, [Figure 9-2](#)) and fresh water is available at the shut-off valve (009).

NOTE: The schematic diagram in [Figure 9-2](#) is an example and is used for reference. Some parts can look different.
- 3 Fill the tank (006, [Figure 9-2](#)) through the funnel (008) with fresh water and the specified quantity of cleaning fluid (max. 30 liters).
 - 3.1 Open the vent valve (002) and the valve (007) of the tank (006).
 - 3.2 Carefully open the shut-off valve (009) in the water supply pipe and fill the tank (006).

NOTE: You can also use a hand-held container filled with cleaning fluid mixed with fresh water to put into the funnel. When you use this method, make sure that the shut-off valve in the supply pipe stays closed.
 - 3.3 Close the shut-off valve (009) in the water supply pipe.
 - 3.4 Close the vent valve (002) and the valve (007) of the tank (006).
- 4 Open the shut-off valve (001) in the compressed air supply pipe to pressurize the tank (006).
- 5 Clean the scavenge air cooler (005) as follows:
 - 5.1 Open the shut-off valve (003).
 - 5.2 After no more cleaning water comes out, close the shut-off valve (003).
- 6 Close the shut-off valve (001) in the compressed air supply pipe.
- 7 Open the vent valve (002) to release the pressure in the tank (006).
- 8 After 10 minutes, do [Step 2](#) to [Step 7](#) again with fresh water (no cleaning fluid).
- 9 Do a check of the water separator for dirt.
- 10 If the water separator is dirty, clean the water separator (refer to the Maintenance Manual).

CLOSE UP

- None

Page left intentionally blank

Operation Manual

Do a test of the exhaust waste valve

9.5 Do a test of the exhaust waste valve

Periodicity

Description

Weeks	1
Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	0.2 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

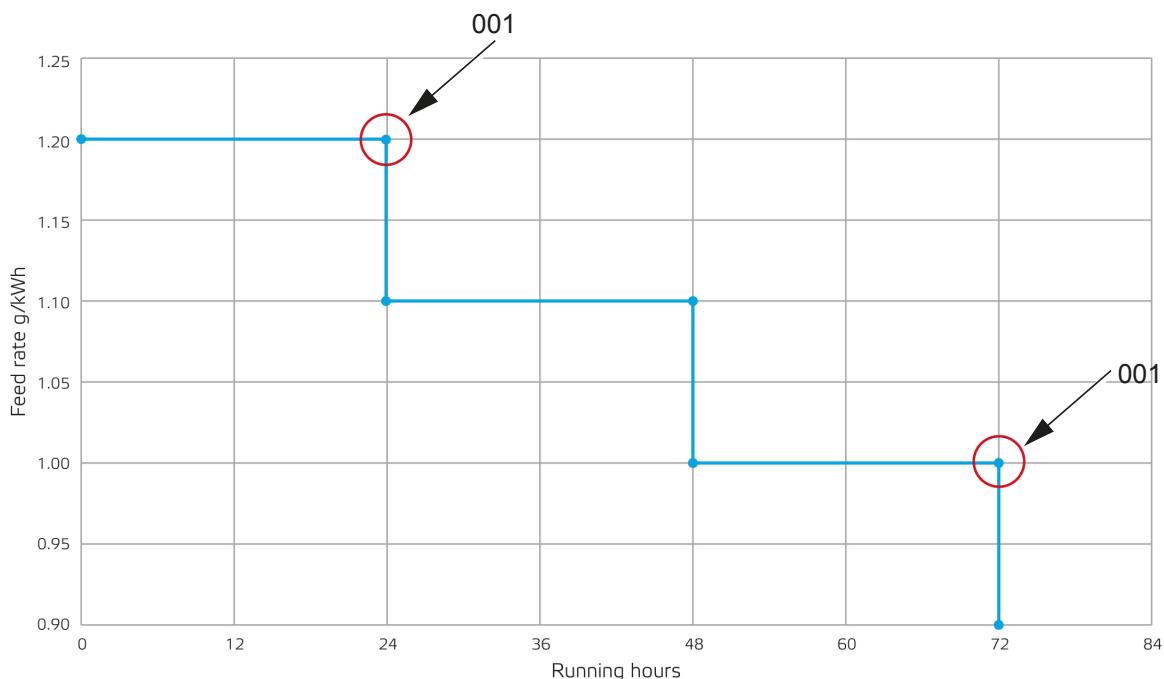
PRELIMINARY OPERATIONS

- This procedure is only applicable, if the engine has operated for a long period at low load with the exhaust waste valve closed.
- The engine load must be less than 70%, or the engine can be stopped.

PROCEDURE

- 1 On the related control panel manually open the exhaust waste valve.
- 2 Make sure that the exhaust waste gate is open.
- 3 Close the exhaust waste valve.
- 4 If the check is incorrect, find the cause and repair the fault.

CLOSE UP


- None

9.6 Running-in of new components - general

After an overhaul or an installation of new components of the piston running system, WinGD recommends a running-in procedure. This makes sure a correct film of cylinder oil on the piston running system is built. The procedure includes a temporary higher feed rate, refer to [Figure 9-3](#).

WinGD recommends an inspection of the cylinder liners and of the piston rings after 24 operation hours and after 72 operation hours (001, [Figure 9-3](#)). For this running-in procedure it is not necessary to have a special loading up apart from vessel specific loading up protocols.

Fig 9-3 Feed rate adjustments - running-in

Page left intentionally blank

9.7 Running-in of new components

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 72.0 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- This procedure is only applicable after an overhaul or an installation of new components of the piston running system.

PROCEDURE

- 1 Set the cylinder lubricating feed rate for the applicable cylinders in the control system to 1.2 g/kWh.
- 2 Operate the engine for 24 hours.
- 3 Inspect the components for damage.
- 4 If damage occurs, find the cause and repair the fault.
- 5 If it is necessary to replace parts of the piston running system, do **Step 2** and **Step 3** again.
- 6 Set the feed rate to 1.1 g/kWh.
- 7 Operate the engine for 24 hours.
- 8 Set the feed rate to 1.0 g/kWh.
- 9 Operate the engine for 24 hours.
- 10 Inspect the components for damage.
- 11 If damage occurs, find the cause and repair the fault.
- 12 If it is necessary to replace parts of the piston running system, start with **Step 1** again.
- 13 Set the feed rate to 0.9 g/kWh.

CLOSE UP

- After 72 hours set the feed rate to the usual settings. Refer to the document "Lubricants" on the WinGD website (<https://www.wingd.com/>) or to section **[section not applicable for this engine]**

Page left intentionally blank

10 Troubleshooting

10.1	Troubleshooting - general data.....	460
10.2	Malfunctions of systems and components.....	462
10.3	Failures and defects of UNIC-flex components.....	482
10.4	Bleed the cooling water system of the liner wall.....	484
10.5	Examine the supply unit for servo oil leakage.....	486
10.6	Examine the supply unit for fuel leakage.....	490
10.7	Examine the rail unit for leakage.....	494
10.8	Examine the FLV or fuel pipes for fuel leakage.....	496
10.9	Temporary cut out a defective injection valve.....	500
10.10	Temporary cut out a defective exhaust valve drive.....	502
10.11	Temporary isolate a cylinder with cooling water leakage.....	504
10.12	Disconnect the fuel pump.....	506
10.13	Connect the fuel pump.....	508
10.14	Temporary isolate a defective turbocharger.....	510
10.15	Temporary isolate the exhaust waste gate.....	514
10.16	Replace the filter of the iGPR.....	518
10.17	Isolate a defective engine at twin engine installation.....	522
10.18	Temporary isolate the HP SCR system.....	524
10.19	Connect the HP SCR system after isolation.....	528

10.1 Troubleshooting - general data

If the AMS shows trigger value signals, do a check of the data that follow:

- Make sure that all shut-off valves to the instruments are open.
- Make sure that all shut-off valves are in the correct operation position.
- Make sure that the instruments are serviceable.
- Make sure that the cables are connected correctly to the instruments.
- Make sure that there are no leaks.

Before you look for other causes repair defects immediately. For the procedures to replace defective components, refer to the Maintenance Manual.

The tables in section [10.2 Malfunctions of systems and components](#) show how to repair malfunctions on the engine. The tables give the data that follow:

- **Title of the table**

The title of the table gives the description of the malfunction.

- **Indication**

This list specifies the number of the signal related to the value. The list can also contain text or be empty.

- **Possible cause**

This list gives possible causes that have activated the alarm, or have started the malfunction. Refer to the specified sequence to find faults.

- **Procedure**

This list gives data about the related malfunction. Refer to the specified sequence during troubleshooting. For repair work refer to the related section of the Maintenance Manual. If you cannot repair the malfunction, speak to or send a message to WinGD.

Page left intentionally blank

10.2 Malfunctions of systems and components

10.2.1 Table of malfunctions

Malfunctions of the water systems (XX10NN to XX19NN)

- Table 10-1 - Supply pressure of the cylinder cooling water is too low
- Table 10-2 - Supply temperature of the cylinder cooling water is too low
- Table 10-3 - Cylinder cooling water temperature downstream of a cylinder is too high
- Table 10-4 - Supply pressure of the cooling water to the SAC is too low
- Table 10-5 - Supply temperature of the cooling water to the SAC is too low
- Table 10-6 - Temperature of the cooling water downstream of the SAC is too high

Malfunctions of the oil systems (XX20NN to XX31NN)

- Table 10-7 - Lubricating oil supply pressure at the engine inlet is too low
- Table 10-8 - Lubricating oil supply pressure upstream of the injectors is too low
- Table 10-9 - Lubricating oil supply temperature at the engine inlet is too high
- Table 10-10 - Lubricating oil supply pressure upstream of the crossheads is too low
- Table 10-11 - Servo oil pressure in the distributor pipe (mini rail) is not in the permitted range
- Table 10-12 - Servo oil leakage flow from the servo oil supply unit is too high
- Table 10-13 - Servo oil flow at a servo oil pump inlet is too low
- Table 10-14 - Bearing oil temperature at a bearing outlet is too high
- Table 10-15 - Oil mist concentration is too high
- Table 10-16 - Piston cooling oil temperature downstream of a piston is too high
- Table 10-17 - Piston cooling oil flow to a piston is not in the permitted range
- Table 10-18 - TC bearing oil temperature at a turbocharger outlet is too high
- Table 10-19 - TC bearing oil supply pressure upstream of a turbocharger is too low
- Table 10-20 - TC bearing oil temperature at a turbocharger inlet is too high (external oil supply)
- Table 10-21 - Damper oil supply pressure upstream of the torsional vibration damper is too low
- Table 10-22 - Damper oil supply pressure upstream of the axial vibration damper is too low
- Table 10-23 - Cylinder oil supply pressure is too low
- Table 10-24 - Cylinder oil flow is too low

Malfunctions of the fuel system (XX34NN)

- Table 10-25 - Fuel supply temperature is not in the permitted range
- Table 10-26 - Fuel supply pressure at the engine inlet is too low
- Table 10-27 - Fuel leakage flow from the fuel supply unit is too high

- Table 10-28 - Temperature difference of the fuel outlet of the two fuel pumps is too high (for X35/-B or X40/-B engine)
- Table 10-29 - Leakage flow from the rail unit is too high
- Table 10-30 - Fuel leakage flow from fuel rail items is too high (engine with FLV)
- Table 10-31 - Fuel leakage flow from fuel rail items is too high (engine with ICU)
- Table 10-32 - Fuel pressure in the fuel rail is too high (for X35/-B or X40/-B engine)
- Table 10-33 - Fuel pressure in the fuel rail is too low (for X35/-B or X40/-B engine)

Malfunctions of systems for DF engine (XX33NN to XX39NN)

- Table 10-34 - Gas concentration in piston underside is too high
- Table 10-35 - Difference pressure of pilot fuel filter is too high
- Table 10-36 - Gas supply pressure is too low

Malfunctions of the exhaust gas system (XX37NN)

- Table 10-37 - Exhaust gas temperature downstream of a cylinder is too high
- Table 10-38 - Exhaust gas temperature difference downstream of all cylinders is too high
- Table 10-39 - Exhaust gas temperature upstream of a turbocharger is too high
- Table 10-40 - Exhaust gas temperature downstream of a turbocharger is too high
- Table 10-41 - Exhaust valve does not operate, unwanted noise
- Table 10-42 - Smoke is too dark

Malfunctions of the air systems (XX40NN to XX44NN)

- Table 10-43 - Scavenge air temperature in the receiver is too high
- Table 10-44 - Scavenge air temperature in the receiver is too low
- Table 10-45 - Scavenge air pressure is too high
- Table 10-46 - Scavenge air pressure is too low
- Table 10-47 - Condensation flow at a water separator is too high
- Table 10-48 - Condensation flow upstream of a water separator is too high
- Table 10-49 - Scavenge air temperature in the piston underside is too high
- Table 10-50 - Starting air supply pressure is too low
- Table 10-51 - Pressure of the air spring air supply is too high
- Table 10-52 - Pressure of the air spring air supply is too low
- Table 10-53 - Oil leakage flow in the collector for leakage oil from the air spring is too high
- Table 10-54 - Control air supply pressure is too low (usual supply)
- Table 10-55 - Control air supply pressure is too low (stand-by supply)
- Table 10-56 - Control air supply pressure is too low (safety supply)

Miscellaneous malfunctions (XX45NN to XX52NN)

- Table 10-57 - Temperature of a thrust bearing pad is too high
- Table 10-58 - Cylinder liner wall temperature is too high

- [Table 10-59 - A fuel pump actuator has a failure](#)
- [Table 10-60 - Power supply to the power supply box E85 has a failure](#)
- [Table 10-61 - Unwanted engine speed decrease](#)
- [Table 10-62 - Unwanted engine stop](#)

10.2.2 Malfunctions of the water systems (XX10NN to XX19NN)

Tab 10-1 Supply pressure of the cylinder cooling water is too low

Indication	Possible cause	Procedure
PT1101A	The cooling water supply system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.
	There are leaks in the cooling water system (for example cracks in a cylinder liner)	<ul style="list-style-type: none"> Find the cause and repair the fault.
	For X92DF, the booster pump is defective	<ul style="list-style-type: none"> Repair the booster pump.

Tab 10-2 Supply temperature of the cylinder cooling water is too low

Indication	Possible cause	Procedure
TE1111A	The cooling water supply system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault. Adjust the cooling water temperature slowly. This prevents damage caused by sudden temperature change.

Tab 10-3 Cylinder cooling water temperature downstream of a cylinder is too high

Indication	Possible cause	Procedure
TE1121-nnA	This is a result of the malfunction in Table 10-1 - Supply pressure of the cylinder cooling water is too low	<ul style="list-style-type: none"> Do the repair shown there.
	The cooling water supply temperature is too high	<ul style="list-style-type: none"> Find the cause and repair the fault.
	A cylinder liner, cylinder cover or exhaust valve cage is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.
	A piston ring is defective	<ul style="list-style-type: none"> As a temporary procedure, cut out the injection of the related cylinder. As a temporary procedure, increase the feed rate of the cylinder oil of the related cylinder. Repair or replace the piston rings.

Tab 10-4 Supply pressure of the cooling water to the SAC is too low

Indication	Possible cause	Procedure
PT1361A	The cooling water supply system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.

Tab 10-5 Supply temperature of the cooling water to the SAC is too low

Indication	Possible cause	Procedure
TE1371A	The cooling water supply system is defective	<ul style="list-style-type: none">Find the cause and repair the fault.

Tab 10-6 Temperature of the cooling water downstream of the SAC is too high

Indication	Possible cause	Procedure
TE1381-nnA	This is a result of the malfunction in Table 10-4 - Supply pressure of the cooling water to the SAC is too low	<ul style="list-style-type: none">Do the repair shown there.
	This is a result of the malfunction in Table 10-5 - Supply temperature of the cooling water to the SAC is too low	<ul style="list-style-type: none">Do the repair shown there.

10.2.3 Malfunction of the oil systems (XX20NN to XX31NN)

Tab 10-7 Lubricating oil supply pressure at the engine inlet is too low

Indication	Possible cause	Procedure
PT2001A	The oil supply system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.
PT2012A (if applicable)		

Tab 10-8 Lubricating oil supply pressure upstream of the injectors is too low

Indication	Possible cause	Procedure
PT2003A	If applicable: the injector oil valve 8423_E0_1 is defective	<ul style="list-style-type: none"> Open the shut-off valve 8423_E0_2. Repair the injector oil valve.
	If injector oil valve 8423_E0_1 is not applicable: shut-off valve 8423_E0_2 is closed	<ul style="list-style-type: none"> Open the shut-off valve 8423_E0_2.
	An injection valve is defective or a pipe is clogged	<ul style="list-style-type: none"> Find the cause and repair the fault.
The alarm has no effect at engine standstill.		

Tab 10-9 Lubricating oil supply temperature at the engine inlet is too high

Indication	Possible cause	Procedure
TE2011A	The oil supply system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.
TE2012A (if applicable)		

Tab 10-10 Lubricating oil supply pressure upstream of the crossheads is too low

Indication	Possible cause	Procedure
PT2021A	The crosshead oil supply system is defective	<ul style="list-style-type: none"> Decrease the engine load. Find the cause and repair the fault.

Tab 10-11 Servo oil pressure in the distributor pipe (mini rail) is not in the permitted range

Indication	Possible cause	Procedure
PT2041A	There is an incorrect setting of the pressure reducing valve	<ul style="list-style-type: none"> Set the pressure reducing valve to the correct value.
	There is an incorrect setting of the safety valve	<ul style="list-style-type: none"> Set the safety valve to the correct value.
	The filter or the opening in the exhaust valve control unit is clogged	<ul style="list-style-type: none"> Clean the filter or the exhaust valve control unit.
	A servo oil pump or the servo oil service pump is defective	<ul style="list-style-type: none"> Repair the defective pumps.

Tab 10-12 Servo oil leakage flow from the servo oil supply unit is too high

Indication	Possible cause	Procedure
LS2055A	The servo oil unit or a servo oil pipe is defective	<ul style="list-style-type: none"> Find the cause and repair the fault, refer to section 10.5 Examine the supply unit for servo oil leakage.

Tab 10-13 Servo oil flow at a servo oil pump inlet is too low

Indication	Possible cause	Procedure
FS2061-nnA	The related servo oil pump is defective	<ul style="list-style-type: none"> Replace the defective servo oil pump as soon as possible.
The alarm has an effect only above 30% of engine load.		

Tab 10-14 Bearing oil temperature at a bearing outlet is too high

Indication	Possible cause	Procedure
TE2101-nnA	This is a result of the malfunction in Table 10-7 - Lubricating oil supply pressure at the engine inlet is too low	<ul style="list-style-type: none"> Do the repair shown there.
TE2201-nnA		<ul style="list-style-type: none"> Find the cause and repair the fault.
TE2301-nnA		<ul style="list-style-type: none"> Use correct oil.

Tab 10-15 Oil mist concentration is too high

Indication	Possible cause	Procedure
AE2401-nnA (crankcase)	The oil supply system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.
AE2415A (gear-case)	Parts that move have become too hot	<ul style="list-style-type: none"> As a temporary procedure, decrease the engine load. Stop the engine. Wait a minimum of 20 minutes to let the engine temperature decrease. Find the cause and repair the fault.
AE2421-nnA (fuel supply unit)		

Tab 10-16 Piston cooling oil temperature downstream of a piston is too high

Indication	Possible cause	Procedure
TE2501-nnA	This is a result of the malfunction in Table 10-9 - Lubricating oil supply temperature at the engine inlet is too high	<ul style="list-style-type: none"> Do the repair shown there.
	A piston ring is defective	<ul style="list-style-type: none"> As a temporary procedure, cut out the injection of the related cylinder. As a temporary procedure, increase the feed rate of the cylinder oil of the related cylinder. Repair or replace the piston rings.

Tab 10-17 Piston cooling oil flow to a piston is not in the permitted range

Indication	Possible cause	Procedure
FS2521-nnA	This is a result of the malfunction in Table 10-7 - Lubricating oil supply pressure at the engine inlet is too low	<ul style="list-style-type: none"> Do the repair shown there.
	A lever is defective	<ul style="list-style-type: none"> Repair the defective lever.

Tab 10-18 TC bearing oil temperature at a turbocharger outlet is too high

Indication	Possible cause	Procedure
TE2601-nnA	This is a result of the malfunction in Table 10-9 - Lubricating oil supply temperature at the engine inlet is too high	<ul style="list-style-type: none"> Do the repair shown there.
	A turbocharger is defective	<ul style="list-style-type: none"> Refer to the turbocharger manual.

Tab 10-19 TC bearing oil supply pressure upstream of a turbocharger is too low

Indication	Possible cause	Procedure
PT2611-nnA	This is a result of the malfunction in Table 10-7 - Lubricating oil supply pressure at the engine inlet is too low	<ul style="list-style-type: none"> Do the repair shown there.
	There is an incorrect setting of the adjustable orifice	<ul style="list-style-type: none"> Set the adjustable orifice to the correct value.

Tab 10-20 TC bearing oil temperature at a turbocharger inlet is too high (external oil supply)

Indication	Possible cause	Procedure
TE2621A	The external oil supply system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.

Tab 10-21 Damper oil supply pressure upstream of the torsional vibration damper is too low

Indication	Possible cause	Procedure
PT2711A	There is an incorrect setting of the throttle valve	<ul style="list-style-type: none"> Set the throttle valve to the correct value.
	An oil supply pipe is defective	<ul style="list-style-type: none"> Replace the oil supply pipe.

Tab 10-22 Damper oil supply pressure upstream of the axial vibration damper is too low

Indication	Possible cause	Procedure
PT2721A	A sealing ring is defective	<ul style="list-style-type: none"> Replace the defective sealing ring.
PT2722A		

Tab 10-23 Cylinder oil supply pressure is too low

Indication	Possible cause	Procedure
PT3124A	A filter element is clogged	<ul style="list-style-type: none"> Change over to the other filter chamber. Replace or clean the clogged filter element.
	The cylinder oil tank is empty	<ul style="list-style-type: none"> Fill the cylinder oil tank.

Tab 10-24 Cylinder oil flow is too low

Indication	Possible cause	Procedure
	This is a result of the malfunction in Table 10-23 - Cylinder oil supply pressure is too low	<ul style="list-style-type: none"> Do the repair shown there.
	This is a result of the malfunction in Table 10-11 - Servo oil pressure in the distributor pipe (mini rail) is not in the permitted range	<ul style="list-style-type: none"> Do the repair shown there.
	There is air in the cylinder oil system	<ul style="list-style-type: none"> Release the unwanted air from the cylinder oil system.
	Lubricating quills are blocked	<ul style="list-style-type: none"> Clean or replace defective parts.

10.2.4 Malfunction of the fuel system (XX34NN)

Tab 10-25 Fuel supply temperature is not in the permitted range

Indication	Possible cause	Procedure
TE3411A	The fuel supply system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.

Tab 10-26 Fuel supply pressure at the engine inlet is too low

Indication	Possible cause	Procedure
PT3421A	The fuel supply system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.
	The fuel does not have the specified properties	<ul style="list-style-type: none"> Use correct fuel.

Tab 10-27 Fuel leakage flow from the fuel supply unit is too high

Indication	Possible cause	Procedure
LS3426-27A	An HP fuel pipe or a fuel pump is defective	<ul style="list-style-type: none"> Find the cause and repair the defective item, refer to section 10.6 Examine the supply unit for fuel leakage.

Tab 10-28 Temperature difference of the fuel outlet of the two fuel pumps is too high (for X35/-B or X40/-B engine)

Indication	Possible cause	Procedure
TE3431-nnA	Flow control valve of a fuel pump is defective	<ul style="list-style-type: none"> Clean or replace the defective flow control valve.
	One of the two fuel pumps is defective	<ul style="list-style-type: none"> Replace the defective fuel pump. As a temporary procedure, close the 3/2-way valve 10-8752_E0_3-4 in the HP fuel pipe of the defective fuel pump.

Tab 10-29 Leakage flow from the rail unit is too high

Indication	Possible cause	Procedure
LS3444-nnA	An item of the rail unit is defective	<ul style="list-style-type: none"> Find the cause and repair the defective item, refer to section 10.7 Examine the rail unit for leakage.

Tab 10-30 Fuel leakage flow from fuel rail items is too high (engine with FLV)

Indication	Possible cause	Procedure
LS3446A	A flow limiting valve (FLV), a injector or a pipe is defective	<ul style="list-style-type: none"> Find the cause and repair the defective item, refer to section 10.8 Examine the FLV or fuel pipes for fuel leakage.

NOTE: The leakage flow from the FLV is related to the viscosity of the used fuel.

Tab 10-31 Fuel leakage flow from fuel rail items is too high (engine with ICU)

Indication	Possible cause	Procedure
LS3446-nnA	An injection control unit (ICU) or a pipe or a connecting pipe (if applicable) is defective	<ul style="list-style-type: none"> Find the cause and repair the defective item, refer to section [section not applicable for this engine].

Tab 10-32 Fuel pressure in the fuel rail is too high (for X35/-B or X40/-B engine)

Indication	Possible cause	Procedure
PT3461-62C	Control signal is missing or wrong	<ul style="list-style-type: none"> Find out the applicable flow control valve. Related to the necessary engine power close the 3/2-way valve 10-8752_E0_3-4 in the HP fuel pipe of the related fuel pump.
	Flow control valve of a fuel pump is defective	<ul style="list-style-type: none"> Clean or replace the defective flow control valve.

Tab 10-33 Fuel pressure in the fuel rail is too low (for X35/-B or X40/-B engine)

Indication	Possible cause	Procedure
PT3461-62C	Control signal is missing or wrong	<ul style="list-style-type: none"> Find out the applicable flow control valve. Disconnect the cable of the applicable flow control valve (The related fuel pump supplies the maximum fuel quantity. The pressure control valve of the fuel rail or the other fuel pump then controls the fuel pressure).
	Flow control valve of a fuel pump is defective	<ul style="list-style-type: none"> Clean or replace the defective flow control valve.
	A fuel pump is defective	<ul style="list-style-type: none"> Replace the defective fuel pump.

10.2.5 Malfunctions of systems for DF engine (XX33NN to XX39NN)

Tab 10-34 Gas concentration in piston underside is too high

Indication	Possible cause	Procedure
AE3315C	There is a leakage in the gas system	<ul style="list-style-type: none">Find the cause and repair the defective item.

Tab 10-35 Difference pressure of pilot fuel filter is too high

Indication	Possible cause	Procedure
PS3464A	The pilot fuel filter is clogged	<ul style="list-style-type: none">Replace the filter element.

Tab 10-36 Gas supply pressure is too low

Indication	Possible cause	Procedure
PT3901C	The gas supply is defective	<ul style="list-style-type: none">Find the cause and repair the fault.
	The gas filter is clogged	<ul style="list-style-type: none">Clean or replace the gas filter. For the filter of the iGPR refer to 10.16 Replace the filter of the iGPR.

10.2.6 Malfunctions of the exhaust gas system (XX37NN)

Tab 10-37 Exhaust gas temperature downstream of a cylinder is too high

Indication	Possible cause	Procedure
TE3701-nnA	The scavenge air flow is too low	<ul style="list-style-type: none"> • Clean the turbocharger. • Clean the air flaps in the scavenge air receiver. • Clean the scavenge ports.
	This is a result of the malfunction in Table 10-3 - Cylinder cooling water temperature downstream of a cylinder is too high	<ul style="list-style-type: none"> • Do the repair shown there.
	There is air in the cooling water system	<ul style="list-style-type: none"> • Open the vent valves of the cooling water system.
	An injection nozzle is defective	<ul style="list-style-type: none"> • Repair or replace the defective injection nozzle.
	The injection time is too long	<ul style="list-style-type: none"> • Find the cause and repair the fault.
	There are leaks in the cooling water system (for example cracks in a cylinder liner)	<ul style="list-style-type: none"> • Find the cause and repair the fault.
	There is a fire in the piston underside	<ul style="list-style-type: none"> • Do the procedure in section 2.4 Fire-fighting in the scavenge air space.

Tab 10-38 Exhaust gas temperature difference downstream of all cylinders is too high

Indication	Possible cause	Procedure
TE3701-nnA	An injection nozzle is defective	<ul style="list-style-type: none"> • Repair or replace the defective injection nozzle.
	The fuel supply system is defective	<ul style="list-style-type: none"> • Find the cause and repair the fault.
	An exhaust valve is defective	<ul style="list-style-type: none"> • Repair or replace the defective exhaust valve.

Tab 10-39 Exhaust gas temperature upstream of a turbocharger is too high

Indication	Possible cause	Procedure
TE3721-nnA	This is a result of the malfunction in Table 10-37 - Exhaust gas temperature downstream of a cylinder is too high	<ul style="list-style-type: none"> • Do the repair shown there.

Tab 10-40 Exhaust gas temperature downstream of a turbocharger is too high

Indication	Possible cause	Procedure
TE3731-nnA	A turbocharger surges	<ul style="list-style-type: none"> As a temporary procedure, decrease the engine load. If applicable, open the exhaust waste gate valve. Refer to the turbocharger manual.
	A turbocharger is defective	<ul style="list-style-type: none"> Refer to the turbocharger manual.

Tab 10-41 Exhaust valve does not operate, unwanted noise

Indication	Possible cause	Procedure
Refer to the display of a control panel	The air spring air pressure is too low	<ul style="list-style-type: none"> Find the cause and repair the fault.
	The opening oil pressure is too low	<ul style="list-style-type: none"> Find the cause and repair the fault.
	An exhaust valve is defective (piston cannot move, or a piston is defective)	<ul style="list-style-type: none"> Repair the exhaust valve.

Tab 10-42 Smoke is too dark

Indication	Possible cause	Procedure
	The engine has too much load	<ul style="list-style-type: none"> Decrease the fuel injection quantity.
	There is unwanted material in the scavenge air	<ul style="list-style-type: none"> Find the cause and remove the unwanted material.
	The fuel does not have the specified properties	<ul style="list-style-type: none"> Use fuel with the specified properties.

10.2.7 Malfunction of the air systems (XX40NN to XX44NN)

Tab 10-43 Scavenge air temperature in the receiver is too high

Indication	Possible cause	Procedure
TE4031-nnA	This is a result of the malfunction in Table 10-4 - Supply pressure of the cooling water to the SAC is too low	<ul style="list-style-type: none"> Do the repair shown there.
	There is air in the cooling water system	<ul style="list-style-type: none"> Release the unwanted air from the cooling water system.
	The SAC is dirty	<ul style="list-style-type: none"> Clean the SAC on the air side, refer to section 9.4 Clean the scavenge air cooler during operation.
	The SAC is defective	<ul style="list-style-type: none"> Repair or replace the SAC.

Tab 10-44 Scavenge air temperature in the receiver is too low

Indication	Possible cause	Procedure
TE4031-nnA	This is a result of the malfunction in Table 10-5 - Supply temperature of the cooling water to the SAC is too low	<ul style="list-style-type: none"> Do the repair shown there.

Tab 10-45 Scavenge air pressure is too high

Indication	Possible cause	Procedure
PT4043-nnC	A turbocharger surges	<ul style="list-style-type: none"> As a temporary procedure, decrease the engine load. If applicable, open the exhaust waste gate valve. Refer to the turbocharger manual.
	A safety valve is defective	<ul style="list-style-type: none"> Repair or replace the defective safety valve.

Tab 10-46 Scavenge air pressure is too low

Indication	Possible cause	Procedure
PT4043-nnC	The silencer, SAC or water separator is clogged	<ul style="list-style-type: none"> Remove the blockage and clean the item.
	A turbocharger is defective	<ul style="list-style-type: none"> Refer to the turbocharger manual.
	The auxiliary blowers do not operate at low load	<ul style="list-style-type: none"> Start or repair the auxiliary blowers.

Tab 10-47 Condensation flow at a water separator is too high

Indication	Possible cause	Procedure
LS4071-nnA	The filter in the return pipe is clogged	<ul style="list-style-type: none"> • Clean the filter.
	The opening in the return pipe is clogged	<ul style="list-style-type: none"> • Clean the return pipe.
	There are leaks in the SAC	<ul style="list-style-type: none"> • Find the cause and repair the fault.

Tab 10-48 Condensation flow upstream of a water separator is too high

Indication	Possible cause	Procedure
LS4075-nnA	The filter in the return pipe is clogged	<ul style="list-style-type: none"> • Clean the filter.
	The opening in the return pipe is clogged	<ul style="list-style-type: none"> • Clean the return pipe.
	There are leaks in the SAC	<ul style="list-style-type: none"> • Find the cause and repair the fault.

Tab 10-49 Scavenge air temperature in the piston underside is too high

Indication	Possible cause	Procedure
TE4081-nnA	There is fire in the piston underside	<ul style="list-style-type: none"> • Refer to section 2.4 Fire-fighting in the scavenge air space.
	A piston ring is defective	<ul style="list-style-type: none"> • As a temporary procedure, decrease the load and cut out the injection of the related cylinder. • As a temporary procedure, increase the feed rate of the cylinder oil of the related cylinder. • Repair or replace the piston rings.
	The engine has too much load	<ul style="list-style-type: none"> • Decrease the fuel injection quantity.

Tab 10-50 Starting air supply pressure is too low

Indication	Possible cause	Procedure
PT4301-nnC	The starting air supply system is defective	<ul style="list-style-type: none"> • Find the cause and repair the fault.

Tab 10-51 Pressure of the air spring air supply is too high

Indication	Possible cause	Procedure
PT4341A	There is an incorrect setting of the control air supply	<ul style="list-style-type: none"> • Set the control air supply to the correct value.

Tab 10-52 Pressure of the air spring air supply is too low

Indication	Possible cause	Procedure
PT4341A	There is an incorrect setting of the control air supply	<ul style="list-style-type: none"> Set the control air supply to the correct value.
	There is an incorrect setting of the safety valve	<ul style="list-style-type: none"> Set the safety valve to the correct value.
	The control air supply is defective	<ul style="list-style-type: none"> Repair or replace the defective item of the control air supply.

Tab 10-53 Oil leakage flow in the collector for leakage oil from the air spring is too high

Indication	Possible cause	Procedure
LS4351-52A	The collector for leakage oil from the air spring is clogged	<ul style="list-style-type: none"> Clean the collector for leakage oil from the air spring.
	The float control is defective	<ul style="list-style-type: none"> Repair the float control.

Tab 10-54 Control air supply pressure is too low (usual supply)

Indication	Possible cause	Procedure
PT4401A	The control air supply system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.
	There is an incorrect setting of the control air supply	<ul style="list-style-type: none"> Set the control air supply to the correct value.

Tab 10-55 Control air supply pressure is too low (stand-by supply)

Indication	Possible cause	Procedure
PT4411A	The starting air supply system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.
	There is an incorrect setting of the control air supply	<ul style="list-style-type: none"> Set the control air supply to the correct value.

Tab 10-56 Control air supply pressure is too low (safety supply)

Indication	Possible cause	Procedure
PT4421A	This is a result of the malfunction in Table 10-54 - Control air supply pressure is too low (usual supply) and in Table 10-55 - Control air supply pressure is too low (stand-by supply)	<ul style="list-style-type: none"> As a temporary procedure, stop the engine. Do the repair shown there.
	The drain valve of the air tank is open	<ul style="list-style-type: none"> Close the drain valve of the air tank.

10.2.8 Miscellaneous malfunctions (XX45NN to XX52NN)

Tab 10-57 Temperature of a thrust bearing pad is too high

Indication	Possible cause	Procedure
TE4521A	This is a result of the malfunction in Table 10-7 - Lubricating oil supply pressure at the engine inlet is too low	<ul style="list-style-type: none"> Do the repair shown there.
	The thrust bearing is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.
	The oil does not have the specified properties	<ul style="list-style-type: none"> Use correct oil.

Tab 10-58 Cylinder liner wall temperature is too high

Indication	Possible cause	Procedure
TE4801-nnC TE4841-nnC	The cylinder oil system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.
	An injection nozzle is defective (for example wrong spray angle, too long spray period)	<ul style="list-style-type: none"> Repair or replace the defective injection nozzle.
	This is a result of the malfunction in Table 10-1 - Supply pressure of the cylinder cooling water is too low or in Table 10-3 - Cylinder cooling water temperature downstream of a cylinder is too high	<ul style="list-style-type: none"> Do the repair shown there.
	There is air in the cooling water system	<ul style="list-style-type: none"> Release the unwanted air from the cooling water system, for an engine with bypass cooling water system refer to section 10.4 Bleed the cooling water system of the liner wall.
	There are exhaust gas leaks into the cooling water system (for example valve seat area)	<ul style="list-style-type: none"> Find the cause and repair the fault.

Tab 10-59 A fuel pump actuator has a failure

Indication	Possible cause	Procedure
XS5046A	The fuel does not have the specified properties	<ul style="list-style-type: none"> Use correct fuel.
	A fuel pump actuator is defective	<ul style="list-style-type: none"> Repair the fuel pump actuator.

Tab 10-60 Power supply to the power supply box E85 has a failure

Indication	Possible cause	Procedure
XS5056A	The power supply is set to OFF	<ul style="list-style-type: none"> Set to ON the power supply.
	The power supply system is defective	<ul style="list-style-type: none"> Repair the power supply system.

Tab 10-61 Unwanted engine speed decrease

Indication	Possible cause	Procedure
	The speed setting from the speed control system is decreased or is not in the specified limits	<ul style="list-style-type: none"> Do a check of the speed control system.
	The fuel injection quantity from the speed control system is decreased	<ul style="list-style-type: none"> A procedure is not necessary because the control system prevents too much load in heavy sea.
	The fuel injection system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.

Tab 10-62 Unwanted engine stop

Indication	Possible cause	Procedure
	The fuel injection system is defective	<ul style="list-style-type: none"> Find the cause and repair the fault.
	This is a result of the malfunction in Table 10-61 - Unwanted engine speed decrease	<ul style="list-style-type: none"> Do the repair shown there.
	There is heavy sea	<ul style="list-style-type: none"> Set to ON the heavy sea mode.

Page left intentionally blank

10.3 Failures and defects of UNIC-flex components

Failures and defects of UNIC-flex components cause failure messages, which are transmitted to the alarm and monitoring system (AMS).

10.3.1 Failure messages

The UNIC-flex engine control system (ECS) constantly does internal integrity checks and monitors the connected sensors. UNIC-flex records each unusual condition and makes an event.

- The system software level does the checks for basic sensor failures.
- The software application level gives the level of the created event.

Related to the severity of the event there are three levels of messages:

- **Minor failures**

This category contains failures that will not cause to decrease the engine load (slowdown) or to stop the engine (shutdown). But you have to do a check of the message. If necessary correct the fault as soon as possible.

- **Major failures**

This category contains failures that will cause to decrease the engine load (slowdown) and/or to stop the engine (shutdown). Major failures are divided in the two sub-groups SLD (slowdown) and SHD (shutdown):

- The SLD sub-group contains failures that cause one cylinder to cut off. The AMS sends a slowdown signal to the ECS.
- The SHD sub-group contains failures that prevent an engine operation. The engine safety system (ESS) sends a shutdown signal to the ECS. UNIC-flex stops the fuel injection.

These two sub-groups are not shown in internal or external interfaces. Thus they are only used on the application level.

If a major failure occurs, the AMS sends a signal to the ECS for a slowdown or shutdown command. Usually the ECS automatically sets the related setpoint for a slowdown or shutdown of the engine, refer also to [Para 10.3.2](#).

- **Info logs**

This category contains messages which describe engine operation conditions or give more data to other failures. Related to the functional description only the most important messages are sent to the AMS.

The table that follows shows some examples of failure messages.

Tab 10-63 Examples of failure messages

ID	Failure text	Failure type
3	Gear Wheel Sensor A Signal Fail	Minor
46	Crank Angle Measurement Fail CCM #2 to #n	Major / SHD
48	Crank Angle Measurement Fail CCM #1	Major / SLD
250	Remote Start Interlock - Main Start Air Valve Manually Closed	Info

For the complete list of failure messages refer to the document - Modbus to AMS signal list - of the engine.

10.3.2 Special failures

WinGD has specified a few special failures (refer to [Table 10-64 - Special failures](#)) that makes it necessary to start other steps.

Tab 10-64 Special failures

ID	Failure text	Failure type
45	Crank Angle Measurement Fail CCM #1 & MCM	Major / SLD
47	Crank Angle Measurement Fail MCM	Minor
96	Module Fail MCM	Minor

If one of these special failures occur, the ECS automatically does the steps that follow:

- The ECS changes the active control location to “ECR manual”.
- The ECS changes to the “Fuel command mode”.

In this condition the ECS cannot set a setpoint for a command. Thus obey the rules that follow:

- If failure 45 occurs the operator must set the fuel command setpoint for slowdown manually.
- If failure 47 or 96 occurs the operator can set the fuel command setpoint if necessary.

10.3.3 Troubleshooting of UNIC-flex failures

If there is an indication of a UNIC-flex failure, use the data that follows to find the failure and to repair it:

- Use the failure ID to find the related system or item.
- If applicable, compare the indicated values with the values on the local instruments.
- Make sure that the related items are mounted correctly and can operate correctly.
- Make sure that the related shut-off valves are in the correct operation positions.
- Do a check of the related cable connections.
- Do a check of the related cable or plugs for damage.
- Do a check of the related item for damage.
- Use a multimeter to do a check of the power supply.
- Use a multimeter to do a check of the sensor signal.
- Use a multimeter to do a check for a short circuit or a ground fault.
- If applicable, do a check of the terminating resistors for correct connection.
- Repair the faults, or temporarily repair defective cables with insulation tape.
- If necessary, replace damaged items.

If you cannot repair a fault, speak to or send a message to WinGD.

10.4 Bleed the cooling water system of the liner wall

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
--	---------------

Duration for performing the procedure	0.2 man-hours
---------------------------------------	---------------

Duration for performing the requirements after job completion	0.0 man-hours
---	---------------

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

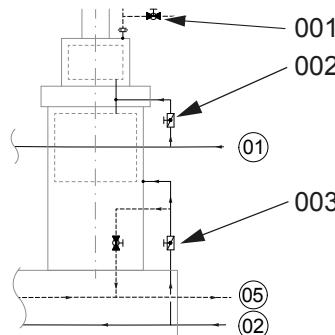
Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None


PRELIMINARY OPERATIONS

- The engine has a bypass cooling water system.
- The engine must be in operation.

PROCEDURE

- 1 Close the shut-off valve (002, [Figure 10-1](#)) in the cylinder cover supply pipe of the related cylinder.
- 2 Let the cooling water flow through the shut-off valve (003) and the cylinder liner with increased flow rate for approximately 15 seconds.
- 3 Open the shut-off valve (002) and wait approximately 30 seconds.
- 4 Close the shut-off valve (002) again.
- 5 Let the cooling water again flow through the shut-off valve (003) and the cylinder liner with increased flow rate for approximately 15 seconds.
- 6 Open the shut-off valve (002) to usual operation.
- 7 Do a check of the temperature of the liner wall.
- 8 If the temperature of the liner wall is too high, do [Step 1](#) to [Step 7](#) again.

Fig 10-1 Cooling water system with bypass cooling

Legend

001	Optional vent valve	01	Connection 01 (cylinder cooling water inlet)
002	Shut-off valve	02	Connection 02 (cylinder liner cooling water inlet)
003	Shut-off valve	05	Connection 05 (cylinder cooling water drain outlet)

CLOSE UP

- None

Operation Manual

Examine the supply unit for servo oil leakage

10.5 Examine the supply unit for servo oil leakage

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 1.0 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

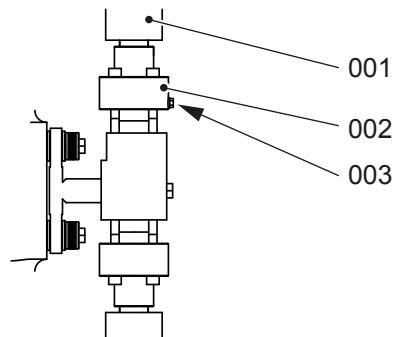
Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS


PRELIMINARY OPERATIONS

- None

PROCEDURE

- 1 Do a check of the level switch LS2055A for free flow. If necessary, clean the bore of the pipe of the level switch.
- 2 Carefully do a check of the temperature of the oil leakage pipe of each servo oil pipe to find the leakage pipe that has an oil flow.
NOTE: There is an oil flow in the leakage pipe that has a higher temperature than the other leakage pipes.
- 3 Do a check of the related servo oil pipe at the highest inspection point for oil flow.
 - 3.1 Carefully loosen the screw plug (003, [Figure 10-2](#)) a maximum of two turns and look for oil flow.
 - 3.2 If there is an oil flow, repair the cause of the leaks as soon as possible. Refer to the Maintenance Manual.
 - 3.3 Tighten the screw plug (003).

Fig 10-2 Example of inspection point

Legend

001 Servo oil pipe
002 Flange

003 Screw plug

- 4 Do [Step 3](#) again for the other inspection points.
NOTE: [Step 5](#) to [Step 8](#) are only applicable for an X82 engine.
- 5 Do a check of the level switch LS2076A (if applicable also LS2077A) for free flow. If necessary, clean the bore of the pipe of the level switch.
- 6 Carefully do a check of the temperature of the oil leakage pipe of each valve control unit (VCU) to find the leakage pipe that has an oil flow.
NOTE: There is an oil flow in the leakage pipe that has a higher temperature than the other leakage pipes.
NOTE: As an alternative you can carefully loosen and tighten the screw plug of the inspection point of each flange a maximum of two turns to find the leakage pipe that has an oil flow.
- 7 Cut out the injection of the related cylinder and replace the defective oil pipe, refer to the Maintenance Manual.

8 If there is no oil flow from none of the leakage pipes, find (if applicable) the connecting pipe that has a leakage as follows:

- 8.1** Carefully loosen the screw plug of the inspection point of the first connecting pipe a maximum of two turns.
- 8.2** Do a check for oil flow.
- 8.3** If there is an oil flow, shut-off the related connecting pipe and repair it at the next occasion, refer to the Maintenance Manual.
- 8.4** Tighten the screw plug.
- 8.5** Do [Step 8.1](#) to [Step 8.4](#) again for the other connecting pipe.

CLOSE UP

- None

Operation Manual

Examine the supply unit for servo oil leakage

Page left intentionally blank

Operation Manual

Examine the supply unit for fuel leakage

10.6 Examine the supply unit for fuel leakage

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 1.0 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

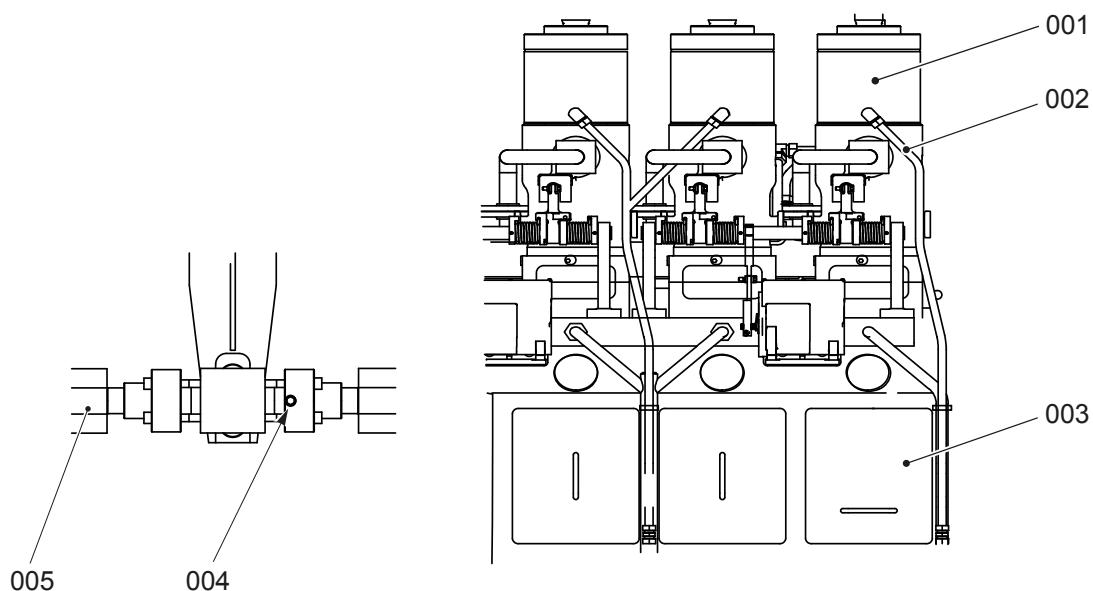
SAFETY PRECAUTIONS

CAUTION

Injury Hazard: Always put on gloves and safety goggles when you do work on hot or pressurized components. When you open the screw plugs, fuel can come out as a spray and cause injury.

PRELIMINARY OPERATIONS

- None


PROCEDURE

- 1 Do a check of the level switch LS3426A (if applicable also LS3427A) for free flow. If necessary, clean the bore of the pipe of the level switch.
- 2 Carefully do a check of the temperature of the fuel leakage pipe (002, [Figure 10-3](#)) of each fuel pump (001) to find the leakage pipe that has a fuel flow.

NOTE: There is a fuel flow in the leakage pipe that has a higher temperature than the other leakage pipes.
- 3 Continue with [Step 4](#) to find the location of the leakage at the related fuel pump and its HP fuel pipes.
- 4 Do a check of the HP fuel pipe (005) at the highest inspection point (004) for leaks.
 - 4.1 Carefully loosen the screw plug a maximum of two turns.
 - 4.2 Do a check for fuel flow.
 - 4.3 If there is fuel flow, repair the cause of the fuel flow as soon as possible, refer to the Maintenance Manual 8752-1.

NOTE: The fuel system has high pressure. Replace a defective HP fuel pipe only when the engine has stopped and the pressure in the system is released.
 - 4.4 Tighten the screw plug.

Fig 10-3 Supply unit (example) and example of inspection point

Legend

001	Fuel pump	004	Inspection point
002	Fuel leakage pipe	005	HP fuel pipe
003	Supply unit		

- 5 Do [Step 4](#) again for the other inspection points.
- 6 If the related HP fuel pipes are tight, a fuel pump is defective. Thus do an overhaul of the fuel pump, refer to the Maintenance Manual 5556-1.
NOTE: If the defective HP fuel pipe cannot be replaced immediately (or the engine must continue to operate), the related fuel pump must be cut out.

CLOSE UP

- None

Operation Manual

Examine the supply unit for fuel leakage

Page left intentionally blank

Operation Manual

Examine the rail unit for leakage

10.7 Examine the rail unit for leakage

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 1.0 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

CAUTION

Injury Hazard: Always put on gloves and safety goggles when you do work on hot or pressurized components. Fuel can come out as a spray and cause injury.

PRELIMINARY OPERATIONS

- None

PROCEDURE

- 1 Do a check of the level switch LS3444A (if applicable also LS3445A) for free flow. If necessary, clean the bore of the pipe of the level switch.
- 2 Carefully look into the rail unit to find the cause of the leakage.
NOTE: Possible causes can be a defective pipe to the exhaust valve, a defective flange or an other defective item.
- 3 Repair the defective item.

CLOSE UP

- None

Operation Manual

Examine the FLV or fuel pipes for fuel leakage

10.8 Examine the FLV or fuel pipes for fuel leakage

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 1.0 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

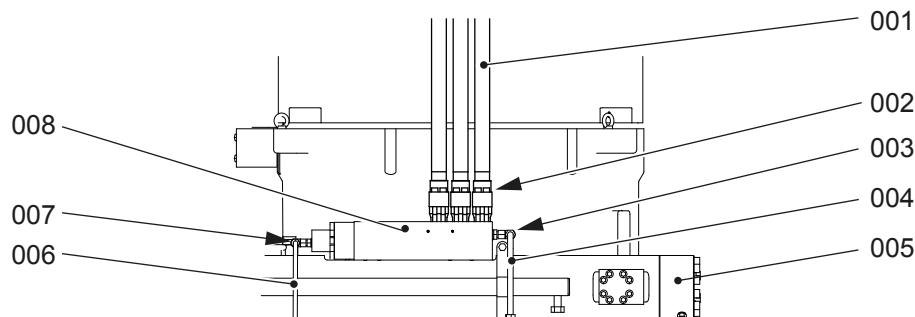
Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

CAUTION


Injury Hazard: Always put on gloves and safety goggles when you do work on hot or pressurized components. When you open the screw plugs, fuel can come out as a spray and cause injury.

PRELIMINARY OPERATIONS

- None

PROCEDURE

Fig 10-4 Leakage on FLV and pipes (example)

Legend

001	HP fuel pipe to injection valve	005	Fuel rail
002	Screw	006	Fuel leakage pipe
003	Screw-in union	007	Screw-in union
004	Fuel leakage pipe	008	Flow limiting valve (FLV)

- 1 Do a check of the level switch LS3446A for free flow. If necessary, clean the bore of the pipe of the level switch.
- 2 Carefully do a check of the temperature of the fuel leakage pipe (004, [Figure 10-4](#)) of each flow limiting valve (FLV) (008) to find the leakage pipe that has a fuel flow.

NOTE: There is a fuel flow in the leakage pipe that has a higher temperature than the other leakage pipes.

NOTE: As an alternative you can carefully open and close the screw-in union (003) of each FLV a maximum of two turns to find the leakage pipe that has a fuel flow.
- 3 If there is a leakage pipe (004) that has a fuel flow, do as follows:
 - 3.1 Make sure that the screws (002) are tightened correctly, refer to the Maintenance Manual 8733-1.
 - 3.2 On the fuel leakage pipe (004), carefully loosen the screw-in union (003) a maximum of two turns.
 - 3.3 Do a check for fuel flow.
 - 3.4 If fuel continues to flow from the screw-in union (003), do as follows (an HP fuel pipe (001) is defective):
 - 3.4.1 Stop the engine.
 - 3.4.2 Remove each of the HP fuel pipes (001) until you find the defective HP fuel pipe (refer to the Maintenance Manual 8733-1).
 - 3.4.3 Do a check for damage on the sealing face of the defective HP fuel pipe (001). If you find damage, grind the sealing face (refer to the Maintenance Manual 8733-1).
 - 3.4.4 If the HP fuel pipe is defective, cut out the injection of the related cylinder and replace the defective HP fuel pipe, refer to the Maintenance Manual.
 - 3.4.5 Tighten the screw-in union (003).
 - 3.4.6 Start the engine.
 - 3.5 If no fuel flows from the screw-in union (003), tighten the screw-in union (003).

- 4 If none of the leakage pipes (004) have a leakage, find the FLV that has a fuel flow more than usual (compared to the amount of leakage from the other FLV) as follows:
 - 4.1 Put an oil tray under the screw-in union (007, [Figure 10-4](#)) of the fuel leakage pipe (006) to collect the usual fuel flow.
 - 4.2 Carefully loosen the screw-in union (007) a maximum of two turns.
 - 4.3 Do a check of the fuel flow.
 - 4.4 If fuel flows from the screw-in union (007) more than usual (compared to the amount of leakage from the other FLV), the piston rod is defective. Replace the defective piston rod (refer to the Maintenance Manual 5564-1).
 - 4.5 Tighten the screw-in union (007).
 - 4.6 Do [Step 4.1](#) to [Step 4.5](#) again for the other FLV.

CLOSE UP

- None

Operation Manual

Examine the FLV or fuel pipes for fuel leakage

Page left intentionally blank

10.9 Temporary cut out a defective injection valve

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 0.5 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- None

PROCEDURE

- 1 Cut out the injection of the related cylinder.
NOTE: If possible, the exhaust valve must always operate.
- 2 For an engine with direct controlled injection valves, disconnect the electrical connection from the injection valve.
- 3 For an engine with conventional injection valves, disconnect the electrical connection from the injection control unit (ICU).
- 4 If it is necessary to operate the engine with the injection cut out for an extended period, do as follows:
 - 4.1 Record the settings of the cylinder oil feed rate.
 - 4.2 Decrease the cylinder oil feed rate for the related cylinder to the minimum setting.
- 5 Repair the fault as soon as possible, refer to the Maintenance Manual.

CLOSE UP

- None

10.10 Temporary cut out a defective exhaust valve drive

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	0.5 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- The engine must be stopped and prepared for maintenance, refer to section [8.20 Prepare the engine after stop - general](#)

PROCEDURE

- 1 Cut out the defective cylinder from the injection, refer to section [10.9 Temporary cut out a defective injection valve](#).
- 2 Disconnect the electrical connection to the related exhaust valve control unit (VCU).
- 3 Repair the fault as soon as possible, refer to the Maintenance Manual.

CLOSE UP

- The engine can be started and operated at decreased load, refer to section [8.3 Start the engine - general](#)

10.11 Temporary isolate a cylinder with cooling water leakage

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 1.0 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
Pressure element	94259		A/R

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- The engine must be stopped and prepared for maintenance, refer to section [8.20 Prepare the engine after stop - general](#)

PROCEDURE

- 1 Isolate the defective cylinder from the cooling water system.
- 2 Make sure that there is no air spring air pressure.
- 3 Lock the exhaust valve in the open position as follows:
 - 3.1 Remove the damper from the top housing (001).
 - 3.2 Make sure that you do not lose the shim(s) (004).
NOTE: The shim(s) must stay in position when the pressure element is installed.
 - 3.3 Apply a thin layer of oil to the thread of the pressure element (003).
 - 3.4 Install the pressure element (003).
- 4 Cut out the defective cylinder from the injection, refer to section [10.9 Temporary cut out a defective injection valve](#).
- 5 Disconnect the electrical connection to the related exhaust valve control unit (VCU).
- 6 Disconnect the control signal connection from the related starting air valve.
- 7 Repair the fault as soon as possible, refer to the Maintenance Manual.

CLOSE UP

- The engine can be started and operated at decreased load, refer to section [8.3 Start the engine - general](#)

10.12 Disconnect the fuel pump

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 1.0 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
Flange	94569		pc 1
Flange	94569A		pc 1
Roller lifting tool	94430		pc 1
Claw	94430A		pc 1
Screw	94430B		pc 1

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- The engine must be stopped and prepared for maintenance, refer to section [8.20 Prepare the engine after stop - general](#)

PROCEDURE

- 1 Release the pressure and drain the related HP fuel pipe.
- 2 Remove the related HP fuel pipe (001) from the fuel pump (002). For the applicable procedure, refer to the Maintenance Manual.
- 3 Install the flange (005) to the fuel pump (002).
- 4 Install the flange (006) to the HP fuel pipe (007).
- 5 Remove the related cover from the supply unit (003).
- 6 Remove the related plug (004) from the supply unit (003).

WARNING

Injury Hazard: Make sure that no personnel are near the flywheel or the engine, before you operate the turning gear.

- 7 Operate the turning gear until the cam is at the highest position.
- 8 Install the roller lifting tool (002) with the mark (001) points down.
- 9 Turn the roller lifting tool (002) 180° until the mark (001) points up.
NOTE: This gives a clearance X and thus the cam (006) cannot move the roller (007).
- 10 Install the claw (004) with the screw (003) to lock the roller lifting tool (002).
- 11 Install the cover to the supply unit (005).

CLOSE UP

- None

10.13 Connect the fuel pump

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 1.0 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
Flange	94569		pc 1
Flange	94569A		pc 1
Roller lifting tool	94430		pc 1
Claw	94430A		pc 1
Screw	94430B		pc 1

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

WARNING

Injury Hazard: Make sure that no personnel are near the flywheel or the engine, before you operate the turning gear.

PRELIMINARY OPERATIONS

- The engine must be stopped and prepared for maintenance, refer to section [8.20 Prepare the engine after stop - general](#)

PROCEDURE

- 1 Release the pressure and drain the related HP fuel pipe.
- 2 Remove the flange (005) from the fuel pump (002).
- 3 Remove the flange (006) from the HP fuel pipe (007).
- 4 Install the related HP fuel pipe (001) to the fuel pump (002). For the applicable procedure, refer to the Maintenance Manual.
- 5 Remove the related cover from the supply unit (003).
- 6 Operate the turning gear until the cam is at the highest position.
- 7 Remove the claw (004) and the screw (003).
- 8 Turn the roller lifting tool (002) 180° until the mark (001) points down.
- 9 Remove the roller lifting tool (002).
- 10 Install the plug to the supply unit (003).
- 11 Install the cover to the supply unit (003).
- 12 Make sure that the fuel pump (002) operates correctly.
- 13 Make sure that the HP fuel pipe (001) has no leaks.

CLOSE UP

- None

10.14 Temporary isolate a defective turbocharger

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	4.0 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

Description	Part No.	CSN	QTY
Cover	94653A		A/R
Cover	94653B		A/R
Cover	94653C		A/R
Cover	94653D		A/R

Supplies

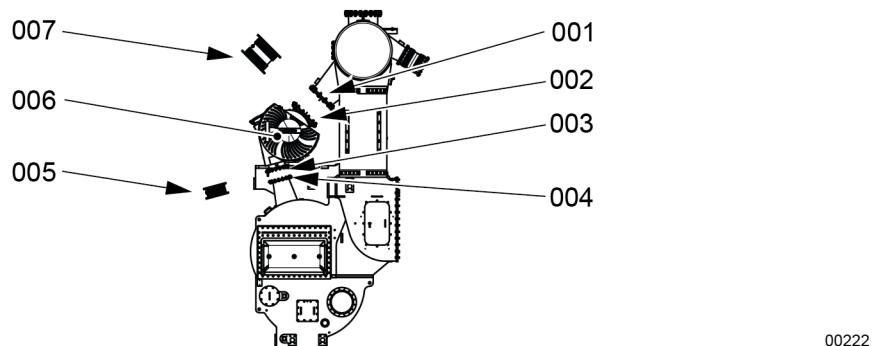
Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None


PRELIMINARY OPERATIONS

- None

PROCEDURE

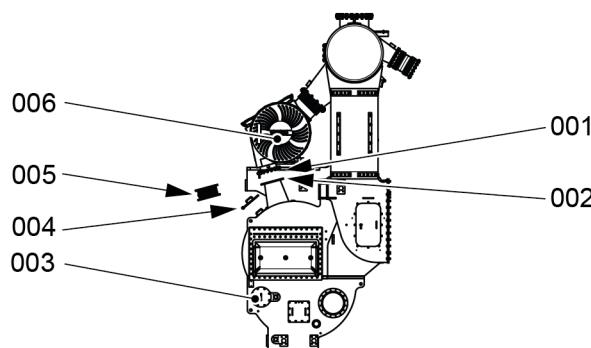
- 1 Stop the engine.
- 2 If not all turbochargers are defective, isolate the defective turbocharger from the exhaust gas system and from the scavenge air system.
NOTE: This step is only applicable for an engine with more than one turbocharger, and if one or two turbochargers are serviceable.
- 2.1 Lock the rotor of the defective turbocharger (refer to the turbocharger manual).
- 2.2 Remove the expansion joint (007, [Figure 10-5](#)) between the defective turbocharger and the exhaust gas manifold.
- 2.3 Install the covers 94653A and 94653B (001 and 002).
- 2.4 Remove the expansion joint (005) between the defective turbocharger air outlet and the diffusor.
- 2.5 Install the covers 94653C and 94653D (003 and 004).
NOTE: You only have to install the covers (003), if the turbochargers are connected to a suction duct.

Fig 10-5 Not all turbochargers are defective (example)

Legend

001	Cover 94653A	005	Expansion joint
002	Cover 94653B	006	Turbocharger
003	Cover 94653C	007	Expansion joint
004	Cover 94653D		

3 If all turbochargers are defective, isolate the defective turbochargers from the scavenge air system.


NOTE: This step is applicable for an engine with one, two, or three turbochargers, and none of the turbochargers are serviceable.

- 3.1** Lock the rotor of the defective turbochargers (refer to the turbocharger manual).
- 3.2** Remove the expansion joint (005, [Figure 10-6](#)) between the defective turbochargers air outlet and the diffusor.
- 3.3** Install the covers 94653C (001).

NOTE: You only have to install the covers (001), if the turbochargers are connected to a suction duct.

- 3.4** Open the covers (003 and 004) on the scavenge air receiver.
- 3.5** Set to ON the auxiliary blowers.

Fig 10-6 All turbochargers are defective (example)

00223

Legend

001	Cover 94653C	004	Cover
002	Cover 94653D	005	Expansion joint
003	Cover	006	Turbocharger

- 4** Make sure that the air supply to the engine room is satisfactory.
- 5** Make sure that the oil supply pressure to the serviceable turbochargers is satisfactory.
- 6** Start the engine with the given limits, refer to section [8.3 Start the engine - general](#).

CLOSE UP

- None

Page left intentionally blank

Operation Manual

Temporary isolate the exhaust waste gate

10.15 Temporary isolate the exhaust waste gate

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 0.5 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- None

PROCEDURE

- 1 Stop the engine.
- 2 Loosen the screws of the flange but do not loosen one of the two middle screws.
- 3 Turn the flange (008) to close the exhaust waste gate.
- 4 Tighten the screws to attach the flange (008).
- 5 Start the engine.

CLOSE UP

- None

Page left intentionally blank

10.16 Replace the filter of the iGPR

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 1.0 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	AR

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

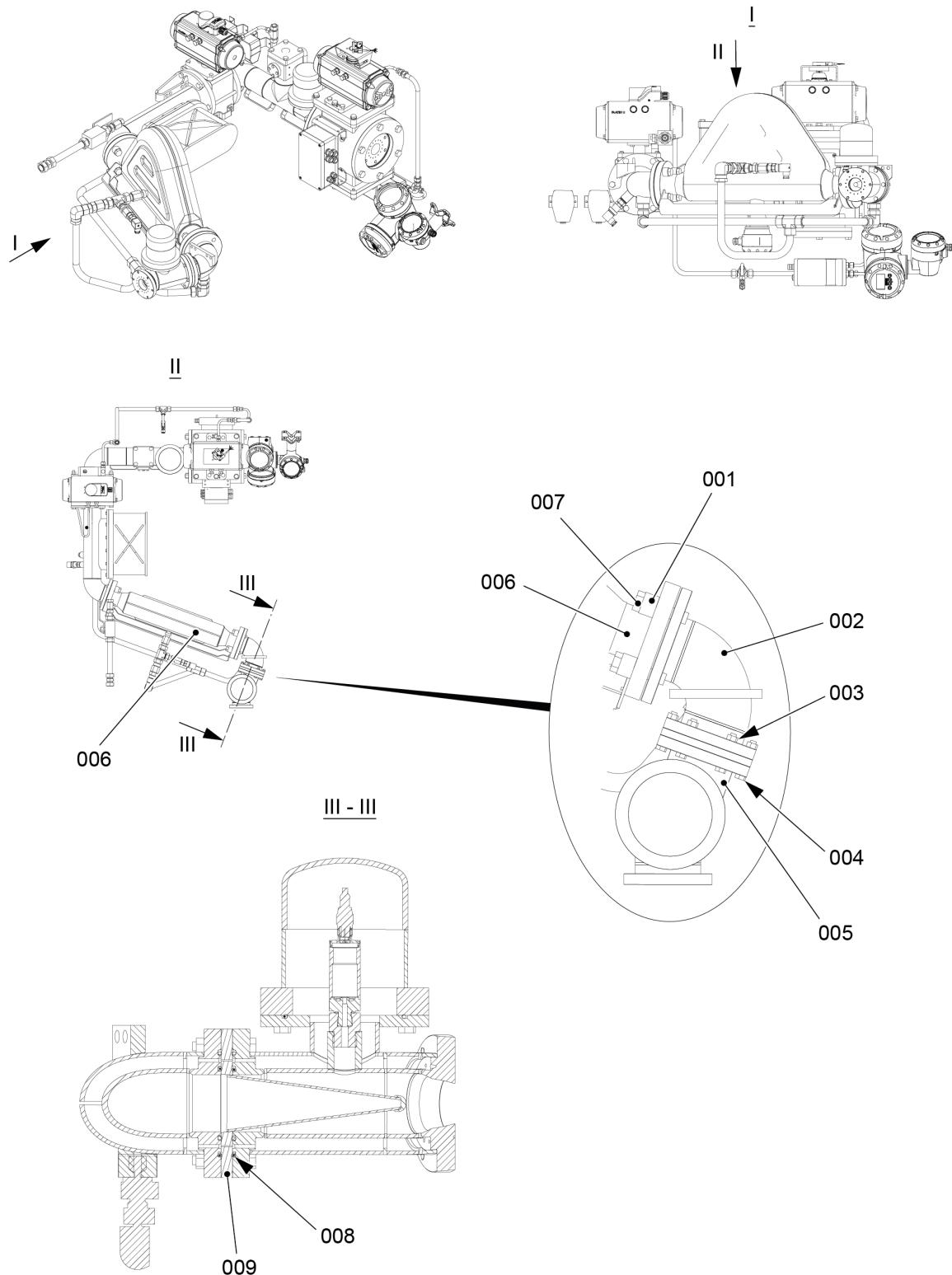
Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
filter			1
O-rings			2

SAFETY PRECAUTIONS

- None


PRELIMINARY OPERATIONS

- The engine must be stopped and prepared for maintenance, refer to section [\[section not applicable for this engine\]](#)

PROCEDURE

- 1** Remove the filter as follows:
 - 1.1** Remove the nuts (003, [Figure 10-7](#)) and the bolts (004).
 - 1.2** Hold the weight of the pipe (002).
 - 1.3** Remove the bolts (007) and the collars (001).
 - 1.4** Remove the pipe (002) from the pipe (005) and the flow sensor (006).
 - 1.5** Remove and discard the filter (009).
 - 1.6** Remove and discard the two O-rings (008).
- 2** Install the filter as follows:
 - 2.1** Put oil on the two new [O-rings](#) (008).
 - 2.2** Put the two O-rings (008) in position as shown.
 - 2.3** Put a new [filter](#) (009) in position as shown.
 - 2.4** Attach the pipe (002) to the pipe (005) and the flow sensor (006) with the collars (001), bolts (007), bolts (004) and nuts (003).
 - 2.5** Torque the bolts (004) to the value given in [\[section not applicable for this engine\]](#).
 - 2.6** Torque the bolts (007) to the value given in [\[section not applicable for this engine\]](#).

Fig 10-7 iGPR filter- replace

CLOSE UP

- None

10.17 Isolate a defective engine at twin engine installation

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
Duration for performing the procedure	1.0 man-hours
Duration for performing the requirements after job completion	0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Basic	1

Support equipment

Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

Description	Part No.	CSN	QTY
None			

SAFETY PRECAUTIONS

- None

PRELIMINARY OPERATIONS

- None

PROCEDURE

- 1 Engage the shaft locking device of the defective engine. Refer to the related documentation of the manufacturer.
NOTE: This prevents the windmilling effect on the propeller of the defective engine (shaft movement), when you operate the other engine.
- 2 If installed, disengage the shaft clutch of the defective engine. Refer to the related documentation of the manufacturer.
- 3 If the shaft locking device and the shaft clutch are unserviceable, make sure that you operate the auxiliary systems.
- 4 If installed, change the pitch of the controllable propeller (CPP) to the lowest resistance.

WARNING

Injury Hazard: Do not go near movable parts of the engine unless you are sure, that in each condition, no part can move.

- 5 Obey the procedure to get access to the engine spaces, refer to section [2.8 Access to engine spaces](#).
- 6 If possible, find the cause and repair the fault.

CLOSE UP

- None

10.18 Temporary isolate the HP SCR system

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements 0.0 man-hours

Duration for performing the procedure 4.0 man-hours

Duration for performing the requirements after job completion 0.0 man-hours

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

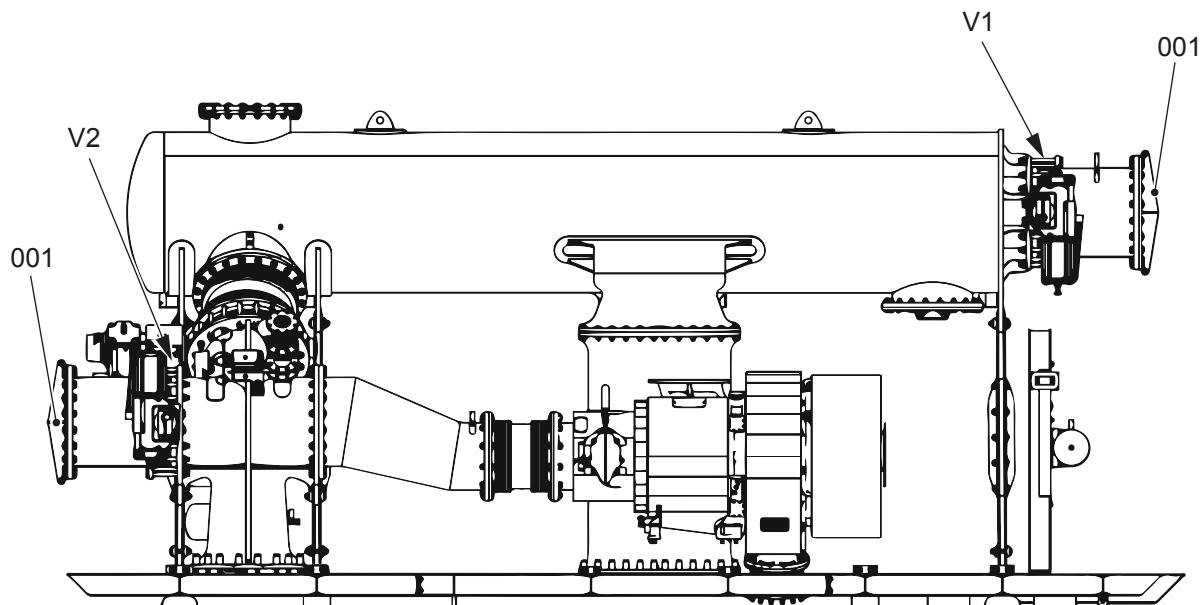
Description	Part No.	CSN	QTY
Cover	94820		2

Supplies

Description	QTY
None	

Spare Parts

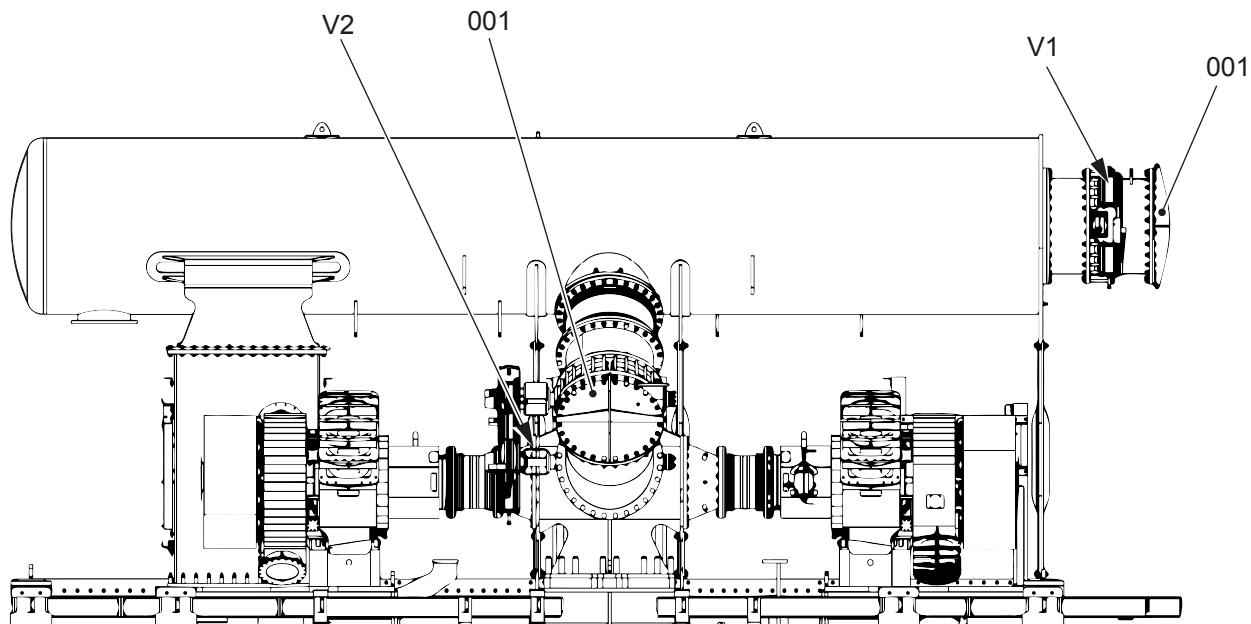
Description	Part No.	CSN	QTY
None			


SAFETY PRECAUTIONS

PRELIMINARY OPERATIONS

- The engine must be stopped and prepared for maintenance, refer to section [8.20 Prepare the engine after stop - general](#)

PROCEDURE


Fig 10-8 SCR system - covers (example for 1 turbocharger)

Legend

001 Cover
V1 SCR inlet valve

V2 SCR outlet valve

Fig 10-9 SCR system - covers (example for 2 turbocharger)**Legend**

001 Cover
V1 SCR inlet valve
V2 SCR outlet valve

- 1 Remove the pipe to the SCR system from the flange downstream of the valve V1.
- 2 Install the **Cover** (001, [Figure 10-8](#) or [Figure 10-9](#)) to the flange.
- 3 Remove the pipe to the SCR system from the flange upstream of the valve V2.
- 4 Install the cover (001) to the flange.

CLOSE UP

- None

Page left intentionally blank

10.19 Connect the HP SCR system after isolation

Periodicity

Description

Unscheduled

Duration for performing preliminary requirements	0.0 man-hours
--	---------------

Duration for performing the procedure	4.0 man-hours
---------------------------------------	---------------

Duration for performing the requirements after job completion	0.0 man-hours
---	---------------

Personnel

Description	Specialization	QTY
Engine crew	Intermediate	1

Support equipment

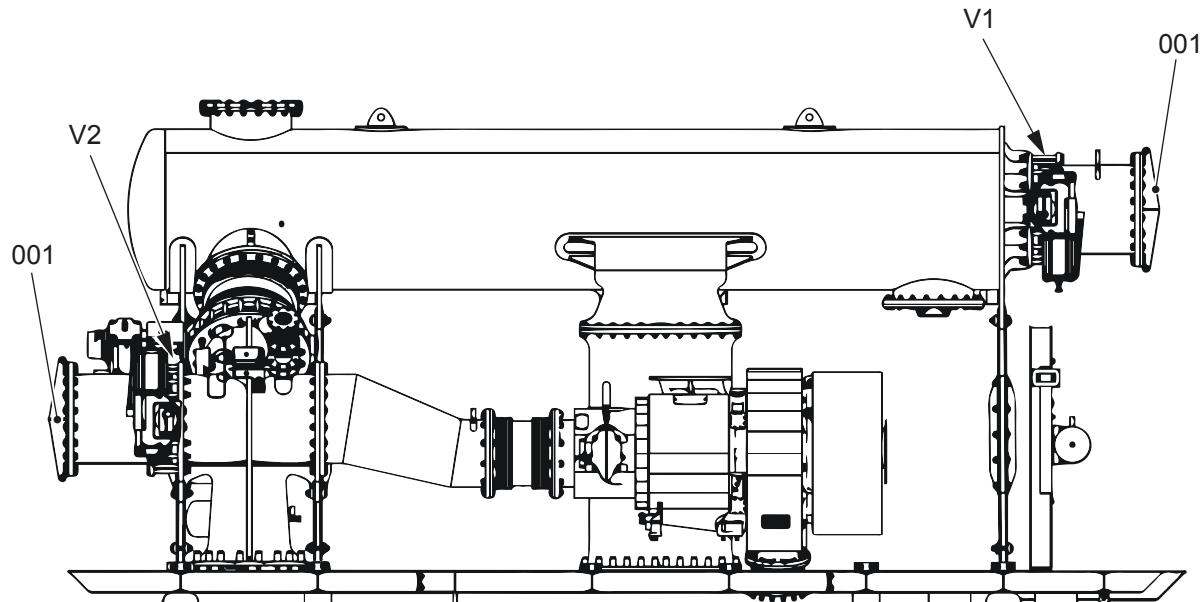
Description	Part No.	CSN	QTY
None			

Supplies

Description	QTY
None	

Spare Parts

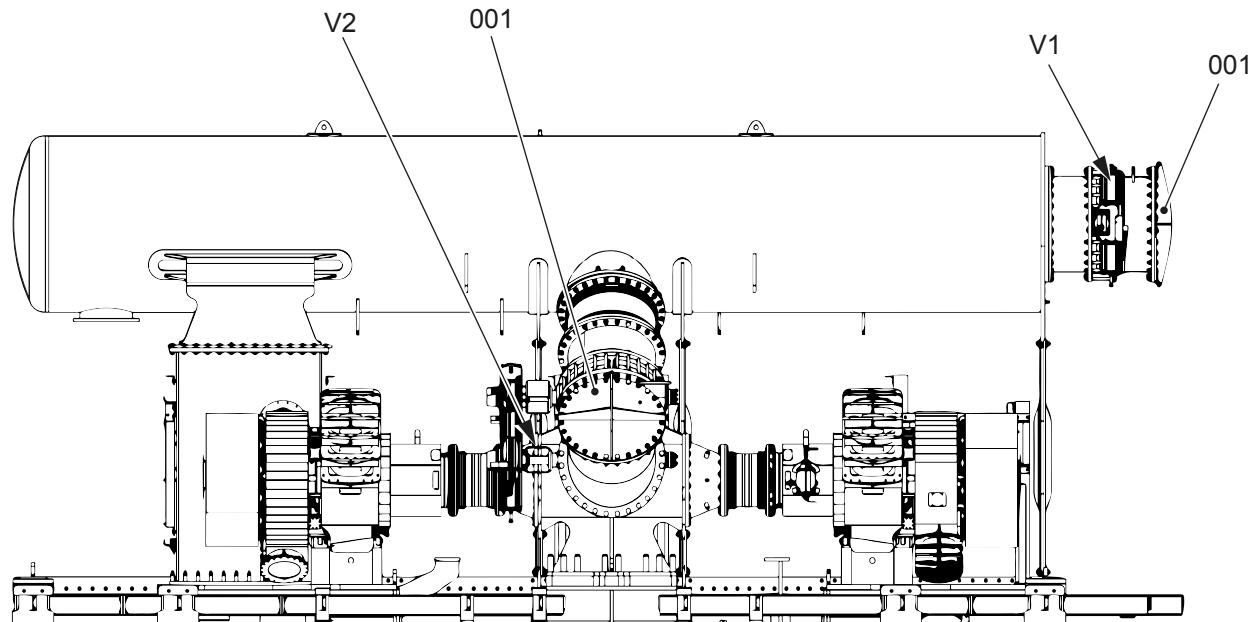
Description	Part No.	CSN	QTY
None			


SAFETY PRECAUTIONS

PRELIMINARY OPERATIONS

- The engine must be stopped and prepared for maintenance, refer to section [8.20 Prepare the engine after stop - general](#)

PROCEDURE


Fig 10-10 SCR system - covers (example for 1 turbocharger)

Legend

001 Cover
V1 SCR inlet valve

V2 SCR outlet valve

Fig 10-11 SCR system - covers (example for 2 turbocharger)**Legend**

001 Cover
V1 SCR inlet valve

V2 SCR outlet valve

- 1 Remove the cover (001, [Figure 10-10](#) or [Figure 10-11](#)) from the flange downstream of the valve V1.
- 2 Install the pipe to the SCR system to the flange.
- 3 Remove the cover (001) from the flange upstream of the valve V2.
- 4 Install the pipe to the SCR system to the flange.

CLOSE UP

- None

11 Technical data

11.1	Engine data.....	532
11.2	List of usual values and safeguard settings - general.....	534
11.3	List of usual values and safeguard settings.....	538
11.4	Section views.....	550

11.1 Engine data

The standard data of the X52DF engine is given in [Table 11-1 - General data](#).

Tab 11-1 General data

Item	Value	Unit
Cylinder bore	520	mm
Piston stroke	2315	mm
Speed range	79 to 105	rpm
Stroke / bore ratio	4.45	-
Available number of cylinders	5 to 8	-
Number of pulses for cylinder pre-lubrication	310	-

[Table 11-2 - Rated power](#) gives the data that follow:

- Rating point**

For the rating points refer to [Figure 11-1](#).

- Speed**

This list gives the speed of the crankshaft in rpm.

- Power**

The power in kW for each cylinder refers to the ISO standard reference conditions:

- Total barometric pressure is 1.0 bar
- Suction air temperature is 25°C
- Relative humidity is 30%
- Cooling water temperature at the engine inlet is 25°C.

- BSFC**

This list gives the Brake Specific Fuel Consumption (BSFC) for fuel of lower heating value 42.7 MJ/kg (10 200 kcal/kg) and standard tuning.

- BSGC**

This list gives the Brake Specific Gas Consumption (BSGC) for fuel of lower heating value 50.0 MJ/kg (11 942 kcal/kg) and standard tuning.

- BSPC**

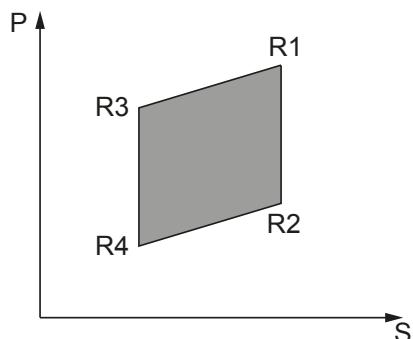
This list gives the Brake Specific Pilot fuel Consumption (BSPC) for pilot fuel (in gas mode) of lower heating value 42.7 MJ/kg (10 200 kcal/kg) and standard tuning.

- Mean piston speed**

This list gives the mean piston speed in m/s.

- MEP**

This list gives the Mean Effective Pressure (MEP) in the combustion chamber in bar.


- Firing pressure**

This list gives a guide value for the firing pressure in the combustion chamber in bar. The firing pressure can be lower than the guide values in the table.

Tab 11-2 Rated power

Rating point	Speed	Power	BSFC in die-sel mode	BSGC in gas mode	BSPC in gas mode	Mean piston speed	MEP	Firing pressure
	[rpm]	[kW/cyl.]	[g/kWh]	[g/kWh]	[g/kWh]	[m/s]	[bar]	[bar]
R1	105	1490	184.3	142.7	1.5	8.1	17.3	200
R2	105	1240	182.3	137.7	1.8	8.1	14.4	200
R3	79	1120	184.3	144.7	1.5	6.1	17.3	200
R4	79	930	182.3	139.7	1.8	6.1	14.4	200

Fig 11-1 Operating range

Legend

R1 Highest power at highest speed

R2 Lowest power at highest speed

R3 Highest power at lowest speed

R4 Lowest power at lowest speed

P Power

S Speed

11.2 List of usual values and safeguard settings - general

For each system of the engine the tables in the chapter that follows give the values for usual operation and the trigger values for safeguard settings.

11.2.1 Tables - identification

The tables give the data that follow:

- **Description**

This list gives the description of the object or of the system.

- **Medium / physical value / location**

This list gives the data that follow:

- Medium that is monitored
- Physical parameter and unit
- Location of the measurement

- **Usual operation (value or range)**

This list gives the setpoint or the approximate range for usual operation. During operation the current values can have small differences to the given values.

- **Signal number**

This list gives the signal number as follows (refer also to [Para 11.2.2](#)):

- First two letters (XX) - Function code
- Four digit number of the signal (for example 10NN)
 - First two numbers - Function group
 - Second two numbers - Running number
- -nn - If more than one signal of the same type is applicable (for example TE2501-nnA is TE2501A, TE2502A, TE2503A)
- Last letter - Applied system

- **Function**

This list gives one of the functions that follow:

- ALM - Alarm
- GTrip - Gas Trip (the ECS changes to diesel mode)
- SLD - Slowdown
- SHD - Shutdown

- **Level**

This list gives one of the levels that follow:

- D - Deviation
- H - High
- L - Low

- **Trigger value**

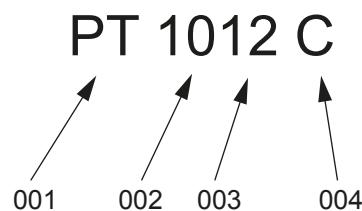
This list gives the value at which the related safeguard function starts.

For the analysis elements (AE) of concentration:

- max - maximum concentration

For the level switches (LS) and flow switches (FS):

- min - minimum or no flow
- max - maximum flow


- **Delay**

This list gives the delay of the action (in seconds) after the trigger value occurs.

11.2.2 Signal codes - identification

An example of a signal code is shown in Figure 11-2.

Fig 11-2 Signal codes

00207

Legend

001 Function code
002 Function group

003 Running number
004 Applied system

Tab 11-3 Function code

Code	First position	Second position
A	Analysis	n/a
C	Control	Control
E	n/a	Element
F	Flow	n/a
G	Gauge	n/a
H	Hand	n/a
I	n/a	Indication
J	Power	n/a
L	Level	n/a
P	Pressure	n/a
S	Speed	Switch
T	Temperature	Transmitter
V	n/a	Valve
X	Unclassified	Unclassified
Y	Vibration	Relay
Z	Position (binary)	n/a

Tab 11-4 Function group

Code	Signal type	System
10 to 19	Signals from the engine	Cooling water
20 to 29	Signals from the engine	System oil, cooling oil
31	Signals from the engine	Cylinder lubrication
33	Signals from the engine	Fuel gas
34	Signals from the engine	Fuel oil
35	Signals from the engine	Fuel gas
37	Signals from the engine	Exhaust gas
40 to 49	Signals from the engine	Air systems
50 to 59	Signals from the engine	Miscellaneous
60 to 69	Signals from the engine	Spare
70 to 79	Signals to the engine	Miscellaneous
80 to 89	Signals to the engine	Miscellaneous

Tab 11-5 Applied system

Code	Description
A	Alarm and monitoring system
C	Control system
L	Local
M	Measured indication, Local control panel
S	Safety system
W	Wrong way alarm
X	Miscellaneous

11.3 List of usual values and safeguard settings

On the pages that follow you find the values for usual operation and the trigger values for safeguard settings as follows:

- [Table 11-6 - Cooling water systems \(XX10NN to XX19NN\)](#)
- [Table 11-7 - Oil systems \(XX2NNN, part 1\)](#)
- [Table 11-8 - Oil systems \(XX2NNN, part 2\)](#)
- [Table 11-9 - Oil systems \(XX2NNN, part 3 \(turbocharger bearing oil\)\)](#)
- [Table 11-10 - Oil systems \(XX2NNN, part 4\)](#)
- [Table 11-11 - Gas system \(XX33NN and XX39NN\)](#)
- [Table 11-12 - Fuel system \(XX34NN\)](#)
- [Table 11-13 - Exhaust gas system \(XX37NN\)](#)
- [Table 11-14 - Air systems \(XX40NN to XX44NN\)](#)
- [Table 11-15 - Miscellaneous items \(XX45NN to XX52NN\)](#)

Tab 11-6 Cooling water systems (XX10NN to XX19NN)

Description	Usual operation (value or range)	Safeguard setting				
		Signal number	Function	Le-vel	Trigger value	De-lay
Cylinder liner, cylinder cover						
HT cylinder cooling water / pressure [bar] / engine inlet connection 02	3.5 to 5	PT1101A	ALM	L	≤ 3.0	0
			SLD	L	≤ 2.8	60
	-	PS1101S	SHD	L	≤ 2.5	60
HT cylinder cooling water / temperature [°C] / engine inlet connection 02	72 to 90	TE1111A	ALM	L	≤ 70	0
HT cylinder cooling water / temperature [°C] / outlet each cylinder (engine outlet connection 03)	90 ± 2 ¹	TE1121-nnA	ALM	H	≥ 95	0
	90 ± 4 ²		SLD	H	≥ 97	60
Scavenge air cooler (SAC)						
SAC LT cooling water / pressure [bar] / engine inlet connection 07	2.5 to 4	PT1361A	ALM	L	≤ 2.0	0
SAC LT cooling water / temperature [°C] / engine inlet connection 07	25 to 36 ³	TE1371A	ALM	L	≤ 21	0
SAC LT cooling water / temperature [°C] / outlet each SAC	25 to 75	TE1381-nnA	ALM	H	≥ 80	0

1 This value is applicable for stable operation condition.

2 This value is applicable for transient operation condition.

3 WinGD recommends a setpoint value of 25°C. 36°C is only permitted if the seawater temperature is 32°C.

Tab 11-7 Oil systems (XX2NNN, part 1)

Description	Usual operation (value or range)	Safeguard setting				
		Signal number	Function	Le-vel	Trigger value	De-lay
Lubricating oil supply - system side						
Main lubricating oil / pressure [bar] / engine inlet connection 25	4.2 to 5	PT2001A	ALM	L	≤ 4.0	0
			SLD	L	≤ 3.8	60
	-	PS2002S	SHD	L	≤ 3.3	10
Main lubricating oil / temperature [°C] / engine inlet connection 25	45 +/- 1 ¹	TE2011A	ALM	H	≥ 50	0
	45 +/- 4 ²		SLD	H	≥ 55	60
External crosshead bearing oil / pressure [bar] / engine inlet connection 30	10.2 to 13	PT2021A	ALM	L	≤ 10.0 ³	10
			SLD	L	≤ 9.0 ³	60
Injector lubricating oil						
Injector lubricating oil / pressure [bar] / inlet injectors	4.2 to 5	PT2003A	ALM	L	≤ 2.6 ⁴	0
Bearing oil						
Main bearing oil / temperature [°C] / outlet each main bearing (optional)	45 to 60	TE2101-nnA	ALM	H	≥ 65	0
			SLD	H	≥ 70	60
Crank bearing oil / temperature [°C] / outlet each crank bearing (optional)	45 to 60	TE2201-nnA	ALM	H	≥ 65	0
			SLD	H	≥ 70	60
Crosshead bearing oil / temperature [°C] / outlet each crosshead bearing (optional)	45 to 60	TE2301-nnA	ALM	H	≥ 65	0
			SLD	H	≥ 70	60

1 This value is applicable for stable operation condition.

2 This value is applicable for transient operation condition.

3 The trigger value is only applicable above 40% engine load.

4 The trigger value is not applicable when the engine has stopped.

Tab 11-8 Oil systems (XX2NNN, part 2)

Description	Usual operation (value or range)	Safeguard setting				
		Signal number	Function	Le-vel	Trigger value	De-lay
Servo oil						
Servo oil / pressure [bar] / distributor pipe (mini rail) ¹	60	PT2041A	ALM	L	≤ 40.0	3
			ALM	H	≥ 75.0	3
Servo oil / flow / inlet each servo oil pump ²	-	FS2061-nnA	ALM	L	min	0
			ALM	H	max	0
Servo oil leakage / flow / servo oil supply unit	-	LS2055A	ALM	H	max	10
Oil mist						
Oil mist / concentration / crankcase (each cylinder) ³	-	AE2401-nnA	ALM	H	max	0
		AS2401A	ALM	H	max	0
		AS2401S	SLD	H	max	60
Oil mist / concentration / gearcase	-	AE2415A	ALM	H	max	0
Oil mist / concentration / fuel supply unit	-	AE2421A	ALM	H	max	0
Piston cooling oil						
Piston cooling oil / temperature [°C] / outlet each cylinder	45 to 75	TE2501-nnA	ALM	H	≥ 80	0
			SLD	H	≥ 85	60
Piston cooling oil / flow [l/min] / outlet each cylinder	-	FS2521-nnS	SHD	H	max	15
			SHD	L	min	15

1 The trigger values are not applicable when the engine has stopped.

2 The trigger values are only applicable above 30% engine load.

3 The concentration is related to the lower explosive level (LEL).

Tab 11-9 Oil systems (XX2NNN, part 3 (turbocharger bearing oil))

Description	Usual operation (value or range)	Safeguard setting				
		Signal number	Function	Level	Trigger value	Delay
Bearing oil turbocharger ABB A100/200-L with internal oil						
TC bearing oil / pressure [bar] / inlet each turbocharger	1.5 to 5.0	PT2611-nnA	ALM	L	≤ 1.0	5
			SLD	L	≤ 0.8	60
	-	PS2611-nnS	SHD	L	≤ 0.6	5
TC bearing oil / temperature [°C] / outlet each turbocharger	45 to 100	TE2601-nnA	ALM	H	≥ 110	0
			SLD	H	≥ 120	60
Bearing oil turbocharger ABB A100/200-L with external oil						
TC bearing oil / pressure [bar] / inlet each turbocharger	1.5 to 5.0	PT2611-nnA	ALM	L	≤ 1.3	5
			SLD	L	≤ 1.1	60
	-	PS2611-nnS	SHD	L	≤ 0.9	5
TC bearing oil / temperature [°C] / inlet turbocharger	45 to 80	TE2621A	ALM	H	≥ 85	0
			SLD	H	≥ 90	60
TC bearing oil / temperature [°C] / outlet each turbocharger	45 to 120	TE2601-nnA	ALM	H	≥ 130	0
			SLD	H	≥ 140	60
Bearing oil turbocharger MHI MET with internal oil						
TC bearing oil / pressure [bar] / inlet each turbocharger	1.0 to 5.0	PT2611-nnA	ALM	L	≤ 0.7	5
			SLD	L	≤ 0.6	60
	-	PS2611-nnS	SHD	L	≤ 0.4	5
TC bearing oil / temperature [°C] / outlet each turbocharger	45 to 80	TE2601-nnA	ALM	H	≥ 85	0
			SLD	H	≥ 90	60
Bearing oil turbocharger MHI MET with external oil						
TC bearing oil / pressure [bar] / inlet each turbocharger	1.0 to 5.0	PT2611-nnA	ALM	L	≤ 0.7	5
			SLD	L	≤ 0.6	60
	-	PS2611-nnS	SHD	L	≤ 0.4	5
TC bearing oil / temperature [°C] / inlet turbocharger	45 to 50	TE2621A	ALM	H	≥ 60	0
			SLD	H	≥ 65	60
TC bearing oil / temperature [°C] / outlet each turbocharger	45 to 80	TE2601-nnA	ALM	H	≥ 85	0
			SLD	H	≥ 90	60

Tab 11-10 Oil systems (XX2NNN, part 4)

Description	Usual operation (value or range)	Safeguard setting				
		Signal number	Function	Le-vel	Trigger value	De-lay
Damper oil						
Damper oil / pressure [bar] / inlet torsional vibration damper ¹	2.8 to 5.0	PT2711A	ALM	L	≤ 2.2	0
Damper oil / pressure [bar] / axial vibration damper space aft side	1.8 to 5.0	PT2721A	ALM	L	≤ 1.7	60
Damper oil / pressure [bar] / axial vibration damper space fore side	1.8 to 5.0	PT2722A	ALM	L	≤ 1.7	60
Cylinder oil						
Cylinder oil / pressure [bar] / cylinder oil rail ²	≥ 0.3	PT3124A	ALM	L	≤ 0.1	30
Cylinder oil / temperature [°C] / engine inlet	35 to 50	-	-	-	-	-

1 The setpoint and trigger values can be different. For the applicable values refer to the specification of the damper manufacturer.

2 This value is only applicable if the engine has no iCAT.

Tab 11-11 Gas system (XX33NN and XX39NN)

Description	Usual operation (value or range)	Safeguard setting				
		Signal number	Function	Level	Trigger value	Delay
Gas leakage detection						
Gas leakage / concentration [% LEL] / piston underside (engine inlet connection 82) ¹	-	AE3315C	ALM	H	≥ 20	0
			GTrip	H	≥ 40	0
Gas supply - iGPR						
Gas / pressure [bar] / inlet iGPR (engine inlet connection 78)	10 to 15 ²	PT3941C	ALM	H	≥ 16.0	0
			GTrip	H	≥ 17.0	0
Gas / flow [kg/h] / inlet iGPR (engine inlet connection 78)	1000 to 1800 ³	FT3942C	-	-	-	-
Gas / pressure [bar] / outlet flowmeter	10 to 15	PT3901C	-	-	-	-
		PS3901S	GTrip	H	≥ 18.0	0
		PS3902S	GTrip	L	≤ 2.0	0
Gas / temperature [°C] / outlet flowmeter	20 to 50 ⁴	TT3901C	-	-	-	-
		TS3901S	GTrip	H	≥ 60	3
		TS3902S	GTrip	L	≤ 0 ⁴	3
Gas / underpressure [mbar] / iGPR enclosure	10 to 20	PT3903C	-	-	-	-
Inert gas / pressure [bar] / engine inlet connection 83	5 to 15	PT3905C	-	-	-	-
Gas / pressure [bar] / inlet pressure regulation valve	10 to 15	PT3906C	-	-	-	-
Gas supply - gas rail						
Gas / pressure [bar] / gas rail	2 to 14 ³	PT3595C PT3597C	-	-	-	-
Air / flow [l/min] / inlet double wall pipe	41 to 45	FS3904S	GTrip	L	≤ 40	0

1 LEL - Lower explosive level

2 Related to the GTD requirement for the selected rating and to the LHV of the gas quality

3 Related to the engine load

4 For a mixture of volatile organic compounds (VOC) and liquefied natural gas (LNG) the usual operation range is 45 to 55°C. The related trigger value is ≤ 40 °C.

Tab 11-12 Fuel system (XX34NN)

Description	Usual operation (value or range)	Safeguard setting				
		Signal number	Function	Le-vel	Trigger value	De-lay
Fuel supply - system side						
Fuel (HFO) / viscosity [cSt] / engine inlet connection 49	13 to 17	- ¹	ALM	H	≥ 20	0
			ALM	L	≤ 10	0
Fuel (MDO - MGO) / viscosity [cSt] / engine inlet connection 49	3 to 14	- ¹	ALM	H	≥ 17	0
			ALM	L	≤ 2	0
Fuel supply unit						
Fuel / pressure [bar] / inlet fuel supply unit	7.5 to 10 ²	PT3421A	ALM	L	≤ 7	0
Fuel / temperature [°C] / inlet fuel supply unit ³	20 to 150	TE3411A	ALM	H	≥ 50 to 160	0
			ALM	L	≤ 20 to 130	0
Fuel leakage / flow / outlet fuel supply unit	-	LS3426A	ALM	H	max	10
Fuel leakage / flow / outlet fuel rail items	-	LS3446A	ALM	H	max	10
Rail unit						
Leakage / flow / outlet rail unit	-	LS3444A	ALM	H	max	10
Pilot fuel filter						
Fuel / differential pressure [bar] / pilot fuel filter	-	PS3464A	ALM	H	≥ 2.5	0

- 1 This measurement is not included in the standard engine supply (the viscometer is a yard supply item).
- 2 When the engine has stopped, the setpoint is 10 bar. The value decreases when the engine load increases.
- 3 The values are related to the fuel viscosity.

Tab 11-13 Exhaust gas system (XX37NN)

Description	Usual operation (value or range)	Safeguard setting				
		Signal number	Function	Le-vel	Trigger value	De-lay
Exhaust pipe / manifold						
Exhaust gas / temperature [°C] / outlet each cylinder	-	TE3701-nnA	ALM	H	≥ 515	0
			ALM	D	≥ 50	0
			SLD	H	≥ 530	60
			SLD	D	≥ 70	60
Exhaust gas / temperature [°C] / inlet each turbocharger	-	TE3721-nnA	ALM	H	≥ 515	0
			SLD	H	≥ 530	60
Exhaust gas / temperature [°C] / outlet each turbocharger	-	TE3731-nnA	ALM	H	≥ 340	0
			SLD	H	≥ 380	60

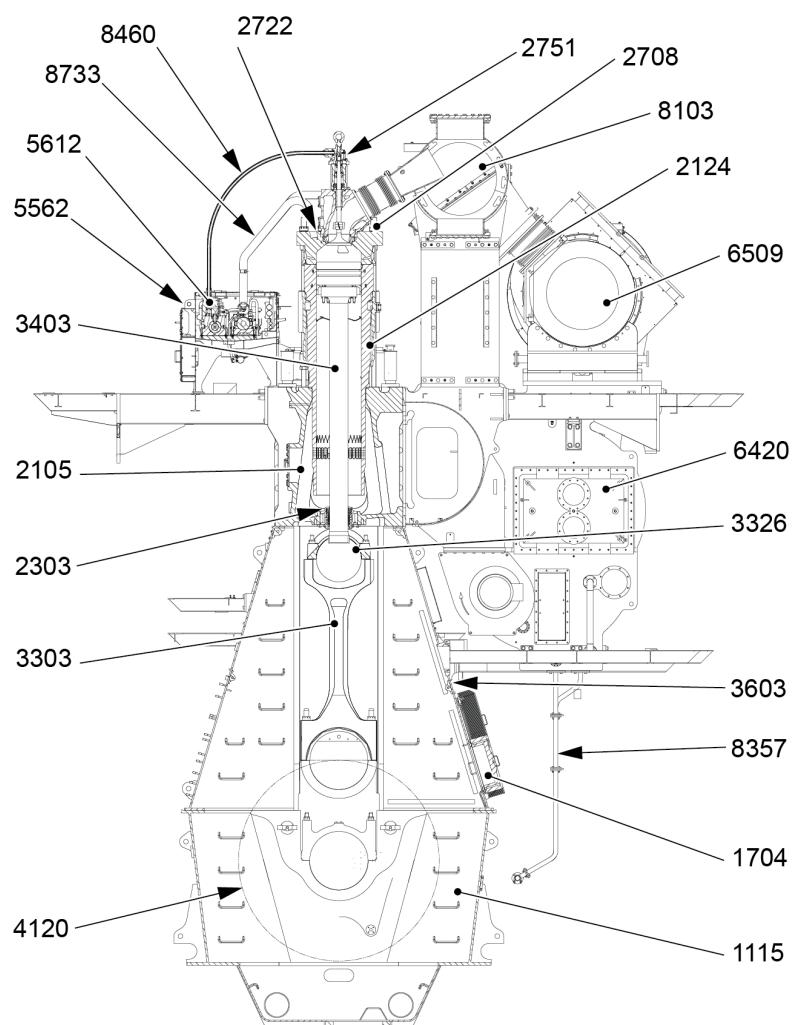
Tab 11-14 Air systems (XX40NN to XX44NN)

Description	Usual operation (value or range)	Safeguard setting				
		Signal number	Function	Le-vel	Trigger value	De-lay
Scavenge air receiver						
Scavenge air / temperature [°C] / outlet each air cooler	28 to 55	TE4031-nnA	ALM	L	≤ 25	0
			ALM	H	≥ 60	0
			SLD	H	≥ 70	60
Scavenge air / temperature [°C] / piston underside each cylinder	28 to 55	TE4081-nnA	ALM	H	≥ 80	0
			SLD	H	≥ 120	60
Condensation water / flow / at each water separator	-	LS4071-nnA	ALM	H	max	10
			SLD	H	max	60
Condensation water / flow / upstream each water separator	-	LS4075-nnA	ALM	H	max	10
			SLD	H	max	60
Starting air supply						
Starting air supply / pressure [bar] / engine inlet connection 40	20 to 30	-	-	-	-	-
Control air supply unit						
Control air supply / pressure [bar] / engine inlet connection 45	7 to 9	-	-	-	-	-
Control air / pressure [bar] / outlet usual supply	6.5	PT4401A	ALM	L	≤ 6.0	0
Control air / pressure [bar] / outlet stand-by supply	6.0	PT4411A	ALM	L	≤ 5.5	0
Control air / pressure [bar] / air tank for safety supply	6.5 or 6.0	PT4421A	ALM	L	≤ 5.0	15
Air spring						
Air spring air / pressure [bar] / supply to air spring	6.5 or 6.0	PT4341A	ALM	H	≥ 7.5	0
			ALM	L	≤ 5.5	0
			SLD	L	≤ 5.0	60
-	PS4341S	SHD	L	≤ 4.5	0	
Oil leakage / flow / air spring at driving end	-	LS4351A	ALM	H	max	5
Oil leakage / flow / air spring at free end	-	LS4352A	ALM	H	max	5

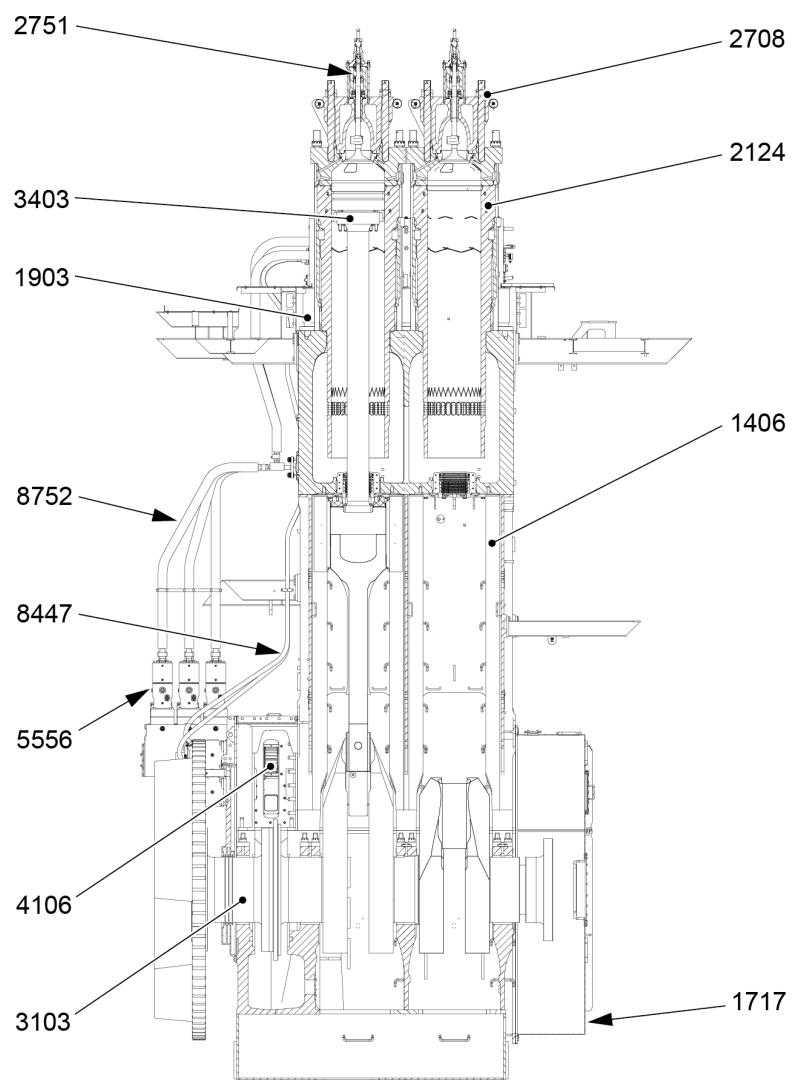
Tab 11-15 Miscellaneous items (XX45NN to XX52NN)

Description	Usual operation (value or range)	Safeguard setting				
		Signal number	Function	Le-vel	Trigger value	De-lay
Thrust bearing						
Pad / temperature [°C] / thrust bearing (AHEAD)	45 to 75	TE4521A	ALM	H	≥ 80	0
			SLD	H	≥ 85	60
	-	TS4521S	SHD	H	≥ 90	60
Cylinder liner						
Wall / temperature [°C] / each cylinder liner aft side	≤ 230	TE4801-nnC	ALM	H	≥ 250	0
			SLD	H	≥ 270	60
Wall / temperature [°C] / each cylinder liner fore side	≤ 230	TE4841-nnC	ALM	H	≥ 250	0
			SLD	H	≥ 270	60
Powertrain						
Crankshaft / speed [% of CMCR] / crank-shaft	-	ST5111-12S	SHD	H	≥ 110	0
Tachometer turbocharger						
Impeller shaft / overspeed [rpm] / each ABB turbocharger	-	ST5201-nnA	ALM	H	refer to note ¹	0
Impeller shaft / overspeed [rpm] / each MHI turbocharger	-	ST5201-nnA	ALM	H	refer to note ²	0

- 1 For ABB TC the alarm value is $0.97 \times n_{Max}$ on rating plate (n_{Max} usually referred to as n_{Mmax} in 1/s).
- 2 For MHI TC the alarm value is $0.95 \times n_{Max}$ on rating plate (n_{Max} usually referred to as overspeed in rpm).


Some items are continuously monitored for correct function. If an item becomes defective, the AMS sends a message to the ship alarm system, refer to [Table 11-16 - Failure messages](#).

Tab 11-16 Failure messages


Medium / location	Signal number	Delay
Failure of oil mist detector	XS2411A	0
Failure of fuel heating	XS3463A	0
Failure of fuel pump actuator	XS5046A	0

11.4 Section views

Fig 11-3 Engine cross section

00619

Fig 11-4 Engine longitudinal section

00620

Page left intentionally blank

12 Operating media

12.1	General for operating media.....	554
12.2	Compressed air.....	556
12.3	Scavenge air.....	558
12.4	Gas fuels.....	560

12.1 General for operating media

WinGD has specified the requirements of the operating media for the engine.

On the WinGD website (<https://www.wingd.com/>) the latest versions of the specifications are available for the operating media that follow:

- Fuel
- Lubricants
- Water

NOTE: On the WinGD website go to your engine type, then to “OPERATION & MAINTENANCE”, then to “FUEL LUBRICANTS WATER”.

On the pages that follow the specifications are available for the operating media that follow:

- Compressed air
- Scavenge air
- Gas (if applicable)

Page left intentionally blank

12.2 Compressed air

Compressed air has the functions that follow:

- Compressed air is used as starting air for the starting air system.
- Compressed air is used as control air for the control air system.

12.2.1 Requirements for compressed air

The compressed air must have the basic properties that follow:

- Clean and dry
- Purity class 2-4-2 (ISO 8573-1).

12.2.2 Recommended procedures for compressed air

WinGD recommends to regularly do the procedures that follow to prevent explosions:

- Regularly drain the starting air bottles to remove condensation.
- Regularly clean the starting air pipes to remove oil that can come from the air compressors.
- Regularly do the maintenance work for the air compressors to keep the compressed air as clean as possible.

Page left intentionally blank

12.3 Scavenge air

The turbocharger compresses the air from the engine room or from outside for the scavenge air.

The air must be as clean as possible to keep the wear of cylinder liner, piston rings, turbocharger compressor etc to a minimum. Silencers are installed to the suction part. The silencers have filter mats in them, which help to keep the air clean.

The filter mats must be serviced and/or cleaned regularly. For this data, refer to the turbocharger manual.

Page left intentionally blank

12.4 Gas fuels

When the engine operates in gas mode, the primary fuel is natural gas. The gas fuel is injected at low pressure. The ECS controls electronically the injection timing and the gas fuel quantity.

Usually, the gas fuel is stored as Liquefied Natural Gas (LNG). There are different designs of the external gas supply system and the LNG storage. The gas supply system supplies natural gas at the correct temperature and pressure to the engine. For more data, refer to the documentation of the related manufacturer.

The gas fuel has to obey the WinGD specifications, refer to [Table 12-1 - Specifications for gas fuel](#).

Tab 12-1 Specifications for gas fuel

Parameter	Value ¹
Lower heating value (LHV)	≥ 28 MJ/Nm ³
Methane content	≥ 70% volume
Hydrogen sulphide (H ₂ S)	≤ 0.05% volume
Hydrogen (H ₂)	≤ 3% volume
Ammonia	≤ 25 mg/Nm ³
Chlorine and fluorine	≤ 50 mg/Nm ³
Dew point of water	≤ -20°C
Oil (aerosol liquid and vapour)	≤ 1 mg/Nm ³
Gas cleanliness	Gas is thought as sufficiently clean ²
Gas temperature at engine inlet, if ambient temperature is ≥ 20°C	20°C to 60°C
Gas temperature at engine inlet, if ambient temperature is < 20°C	≥ ambient temperature, but always ≥ 0°C ³

1 Values given in Nm³ are at 0°C and 101.3 kPa.

2 Prevent contamination from the gas system. For this, flush the gas pipes correctly, make sure of the cleanliness of the bunkering connections etc.

3 The cause of this value is to prevent condensation in the annular spaces of the gas pipes. If necessary, you can do one of the two procedures that follow:

- Increase the temperature of the gas to more than the dew point temperature of the ambient air.
- Decrease the water content of the ambient air.

13 Schematic diagrams

13.1	Schematic diagrams - general.	562
------	---------------------------------------	-----

13.1 Schematic diagrams - general

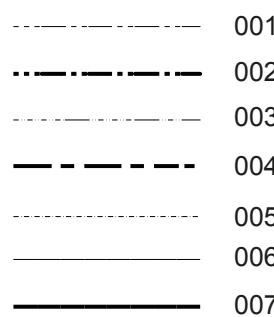
NOTE: The diagrams below are part of the Engine-Builder Drawing-Set and are not included in this operation manual. The diagrams below can be referenced directly in the specific Engine-Builder Drawing-Set. Please contact your Engine-Builder, if you need the specific diagrams.

13.1.1 Engine control diagram

The engine control diagram shows data about the control items of the engine and its systems.

In the sub-sections that follow you find general data about the engine control diagram.

13.1.1.1 Area codes in the engine control diagram


The area codes in the engine control diagram are as follows:

- A - Control air supply unit
- B - Fuel supply
- D - Servo oil supply
- E - Valve unit for start
- K - Local control panel.

13.1.1.2 Line codes in the engine control diagram

The line codes in the engine control diagram are shown in [Figure 13-1](#).

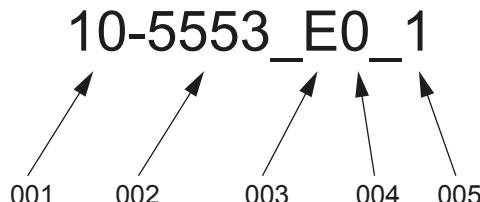
Fig 13-1 Line codes

00208

Legend

001	Low pressure oil circuits	005	Heating
002	High pressure oil circuits	006	Control air circuits
003	Low pressure fuel circuits	007	Starting air circuits
004	High pressure fuel circuits		

13.1.1.3 System codes in the engine control diagram

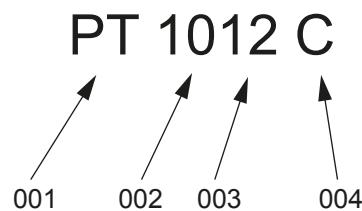

The system codes in the engine control diagram are as follows:

- Code 10 - Fuel system
- Code 20 - Oil system
- Code 25 - Cylinder oil system
- Code 30 - Starting air system
- Code 35 - Control air system
- Code 40 - HT Cooling water system
- Code 48 - Cylinder cooling water system
- Code 50 - Exhaust gas system
- Code 70 - Miscellaneous systems
- Code 80 - Automation system
- Code 99 - Pipe diagram
- Code 900 - Engine room.

13.1.1.4 Component codes in the engine control diagram

The component codes in the engine control diagram are shown as example in [Figure 13-2](#).

Fig 13-2 Process codes


00206

Legend

001	System code	004	CX - Cylinder, eg C5 = for cylinder 5
002	Design group	005	Running number
003	E0 = for engine		

13.1.1.5 Signal codes - identification

The signal codes in the engine control diagram are shown as example in [Figure 13-3](#).

Fig 13-3 Signal codes

00207

Legend

001	Function code	003	Running number
002	Function group	004	Applied system

Tab 13-1 Function code

Code	First position	Second position
A	Analysis	n/a
C	Control	Control
E	n/a	Element
F	Flow	n/a
G	Gauge	n/a
H	Hand	n/a
I	n/a	Indication
J	Power	n/a
L	Level	n/a
P	Pressure	n/a
S	Speed	Switch
T	Temperature	Transmitter
V	n/a	Valve
X	Unclassified	Unclassified
Y	Vibration	Relay
Z	Position (binary)	n/a

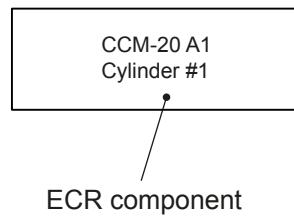
Tab 13-2 Function group

Code	Signal type	System
10 to 19	Signals from the engine	Cooling water
20 to 29	Signals from the engine	System oil, cooling oil
31	Signals from the engine	Cylinder lubrication
33	Signals from the engine	Fuel gas
34	Signals from the engine	Fuel oil
35	Signals from the engine	Fuel gas
37	Signals from the engine	Exhaust gas
40 to 49	Signals from the engine	Air systems
50 to 59	Signals from the engine	Miscellaneous
60 to 69	Signals from the engine	Spare
70 to 79	Signals to the engine	Miscellaneous
80 to 89	Signals to the engine	Miscellaneous

Tab 13-3 Applied system

Code	Description
A	Alarm and monitoring system
C	Control system
L	Local
M	Measured indication, Local control panel
S	Safety system
W	Wrong way alarm
X	Miscellaneous

13.1.2 Electric connection diagram


The electric connection diagram shows data about the bus routing connections (without cylinder related signals).

You can find an overview of the used color codes and symbols in [Figure 13-4](#).

Fig 13-4 Color codes and symbols - electric connection diagram

Color codes:

Power	—
Bus	—
Speed	—
Diesel	—
Option	—

00221

13.1.3 Piping and instrumentation diagram

The piping and instrumentation diagrams show data about the piping and instrumentation of the auxiliary systems of the engine.